Objective: Lipid accumulation in skeletal muscle and the liver is strongly implicated in the development of insulin resistance and type 2 diabetes, but the mechanisms underpinning fat accrual in these sites remain incompletely understood. Accumulating evidence of muscle mitochondrial dysfunction in insulin-resistant states has fuelled the notion that primary defects in mitochondrial fat oxidation may be a contributory mechanism. The purpose of our study was to determine whether patients with congenital lipodystrophy, a disorder primarily affecting white adipose tissue, manifest impaired mitochondrial oxidative phosphorylation in skeletal muscle. Research Design and Methods: Mitochondrial oxidative phosphorylation was assessed in quadriceps muscle using P-31-magnetic resonance spectroscopy measurements of phosphocreatine recovery kinetics after a standardized exercise bout in nondiabetic patients with congenital lipodystrophy and in age-, gender-, body mass index-, and fitness-matched controls. Results: The phosphocreatine recovery rate constant (k) was significantly lower in patients with congenital lipodystrophy than in healthy controls (P < 0.001). This substantial (similar to 35%) defect in mitochondrial oxidative phosphorylation was not associated with significant changes in basal or sleeping metabolic rates. Conclusions: Muscle mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy, a paradigmatic example of primary adipose tissue dysfunction. This finding suggests that changes in mitochondrial oxidative phosphorylation in skeletal muscle could, at least in some circumstances, be a secondary consequence of adipose tissue failure. These data corroborate accumulating evidence that mitochondrial dysfunction can be a consequence of insulin-resistant states rather than a primary defect. Nevertheless, impaired mitochondrial fat oxidation is likely to accelerate ectopic fat accumulation and worsen insulin resistance.

Sleigh A, Stears A, Thackray K, Watson L, Gambineri A, Nag S, et al. (2012). Mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy. THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, 97, 438-442 [10.1210/jc.2011-2587].

Mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy.

GAMBINERI, ALESSANDRA;
2012

Abstract

Objective: Lipid accumulation in skeletal muscle and the liver is strongly implicated in the development of insulin resistance and type 2 diabetes, but the mechanisms underpinning fat accrual in these sites remain incompletely understood. Accumulating evidence of muscle mitochondrial dysfunction in insulin-resistant states has fuelled the notion that primary defects in mitochondrial fat oxidation may be a contributory mechanism. The purpose of our study was to determine whether patients with congenital lipodystrophy, a disorder primarily affecting white adipose tissue, manifest impaired mitochondrial oxidative phosphorylation in skeletal muscle. Research Design and Methods: Mitochondrial oxidative phosphorylation was assessed in quadriceps muscle using P-31-magnetic resonance spectroscopy measurements of phosphocreatine recovery kinetics after a standardized exercise bout in nondiabetic patients with congenital lipodystrophy and in age-, gender-, body mass index-, and fitness-matched controls. Results: The phosphocreatine recovery rate constant (k) was significantly lower in patients with congenital lipodystrophy than in healthy controls (P < 0.001). This substantial (similar to 35%) defect in mitochondrial oxidative phosphorylation was not associated with significant changes in basal or sleeping metabolic rates. Conclusions: Muscle mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy, a paradigmatic example of primary adipose tissue dysfunction. This finding suggests that changes in mitochondrial oxidative phosphorylation in skeletal muscle could, at least in some circumstances, be a secondary consequence of adipose tissue failure. These data corroborate accumulating evidence that mitochondrial dysfunction can be a consequence of insulin-resistant states rather than a primary defect. Nevertheless, impaired mitochondrial fat oxidation is likely to accelerate ectopic fat accumulation and worsen insulin resistance.
2012
Sleigh A, Stears A, Thackray K, Watson L, Gambineri A, Nag S, et al. (2012). Mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy. THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, 97, 438-442 [10.1210/jc.2011-2587].
Sleigh A;Stears A;Thackray K;Watson L;Gambineri A;Nag S;Campi VI;Schoenmakers N;Brage S;Carpenter TA;Murgatroyd PR;O'Rahilly S;Kemp GJ;Savage DB...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/154485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact