We show that the Harnack inequality for a class of degenerate parabolic quasilinear PDE associated to a system of Lipschitz continuous Hormander vector fields follows from the basic hypothesis of doubling condition and a weak Poincar\'e inequality.
Titolo: | A subelliptic analogue of Aronson–Serrin’s Harnack inequality | |
Autore/i: | Luca Capogna; CITTI, GIOVANNA; Garrett Rea | |
Autore/i Unibo: | ||
Anno: | 2013 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00208-013-0937-y | |
Abstract: | We show that the Harnack inequality for a class of degenerate parabolic quasilinear PDE associated to a system of Lipschitz continuous Hormander vector fields follows from the basic hypothesis of doubling condition and a weak Poincar\'e inequality. | |
Data prodotto definitivo in UGOV: | 2014-03-16 17:20:14 | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.