We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the TeX -norm of its intrinsic gradient
Titolo: | Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group | |
Autore/i: | CITTI, GIOVANNA; MANFREDINI, MARIA; Andrea Pinamonti; Francesco Serra Cassano | |
Autore/i Unibo: | ||
Anno: | 2014 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-013-0622-8 | |
Abstract: | We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the TeX -norm of its intrinsic gradient | |
Data prodotto definitivo in UGOV: | 2014-07-12 13:00:19 | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.