We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the TeX -norm of its intrinsic gradient

Giovanna Citti, Maria Manfredini, Andrea Pinamonti, Francesco Serra Cassano (2014). Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 49(3/4), 1279-1308 [10.1007/s00526-013-0622-8].

Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group

CITTI, GIOVANNA;MANFREDINI, MARIA;
2014

Abstract

We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the TeX -norm of its intrinsic gradient
2014
Giovanna Citti, Maria Manfredini, Andrea Pinamonti, Francesco Serra Cassano (2014). Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 49(3/4), 1279-1308 [10.1007/s00526-013-0622-8].
Giovanna Citti;Maria Manfredini;Andrea Pinamonti;Francesco Serra Cassano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/154333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact