Compacted mixtures based on ball-milled magnesium hydride (MgH2) have gained significant research interest as suitable materials for hydrogen storage tanks. The issue related to their stability during practical service conditions is one of paramount relevance. In this work, we investigate the microstructure and morphology of pellets obtained by the compaction of ball-milled MgH2/Nb2O5 powders mixed with expanded natural graphite. The pellets are subjected to repeated hydrogen sorption cycles to measure hydrogen storage properties and its stability with cycling. Moreover, the effect of air-exposure on the hydrogen sorption behavior is studied. Electron microscopy observations of as-prepared and cycled pellets point to a dramatic modification of the material’s microstructure upon repeated hydrogen cycling. In particular, the appearance of MgH2 particles depleted of the Nb2O5 catalyst and the formation of hollow MgO shells are highlighted. These findings are discussed by a simple model which takes into account the basic mechanisms intervening during the metal-hydride transformation in the pellet.

Microstructure and morphology changes in MgH2/expanded natural graphite pellets upon hydrogen cycling

PASQUINI, LUCA
2013

Abstract

Compacted mixtures based on ball-milled magnesium hydride (MgH2) have gained significant research interest as suitable materials for hydrogen storage tanks. The issue related to their stability during practical service conditions is one of paramount relevance. In this work, we investigate the microstructure and morphology of pellets obtained by the compaction of ball-milled MgH2/Nb2O5 powders mixed with expanded natural graphite. The pellets are subjected to repeated hydrogen sorption cycles to measure hydrogen storage properties and its stability with cycling. Moreover, the effect of air-exposure on the hydrogen sorption behavior is studied. Electron microscopy observations of as-prepared and cycled pellets point to a dramatic modification of the material’s microstructure upon repeated hydrogen cycling. In particular, the appearance of MgH2 particles depleted of the Nb2O5 catalyst and the formation of hollow MgO shells are highlighted. These findings are discussed by a simple model which takes into account the basic mechanisms intervening during the metal-hydride transformation in the pellet.
2013
D. Mirabile Gattia; A. Montone; L. Pasquini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/153471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact