We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. We first looked for CH and CN band strength variations and bimodalities in a sample of RGB stars with 17.5 ≤ V ≤ 14.5. Thus we derived C and N abundances under LTE assumption by comparing observed spectra with synthetic models from the spectral features at 4300 A (G-band) and at ∼3883 A (CN). Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V ∼ 15.7), while the range of variations in N abundances is very large and spans almost ∼2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar evolution. We isolated two groups with N-rich and N-poor stars and found that N abundance variations correlate with the (U-V) color in the DOLORES color.magnitude diagram (CMD). The V, (U-V) CMD for this cluster shows an additional RGB sequence, located at the red of the main RGB and amounting to a small fraction of the total giant population. We identified two CH stars detected in previous studies in our U, V images. These stars, which are both cluster members, fall on this redder sequence, suggesting that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown RGB branch.

C. Lardo, E. Pancino, A. Mucciarelli, A. P. Milone (2012). Carbon and nitrogen abundances of stellar populations in the globular cluster M 2. ASTRONOMY & ASTROPHYSICS, 548, 107-120 [10.1051/0004-6361/201220129].

Carbon and nitrogen abundances of stellar populations in the globular cluster M 2

C. Lardo;MUCCIARELLI, ALESSIO;
2012

Abstract

We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. We first looked for CH and CN band strength variations and bimodalities in a sample of RGB stars with 17.5 ≤ V ≤ 14.5. Thus we derived C and N abundances under LTE assumption by comparing observed spectra with synthetic models from the spectral features at 4300 A (G-band) and at ∼3883 A (CN). Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V ∼ 15.7), while the range of variations in N abundances is very large and spans almost ∼2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar evolution. We isolated two groups with N-rich and N-poor stars and found that N abundance variations correlate with the (U-V) color in the DOLORES color.magnitude diagram (CMD). The V, (U-V) CMD for this cluster shows an additional RGB sequence, located at the red of the main RGB and amounting to a small fraction of the total giant population. We identified two CH stars detected in previous studies in our U, V images. These stars, which are both cluster members, fall on this redder sequence, suggesting that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown RGB branch.
2012
C. Lardo, E. Pancino, A. Mucciarelli, A. P. Milone (2012). Carbon and nitrogen abundances of stellar populations in the globular cluster M 2. ASTRONOMY & ASTROPHYSICS, 548, 107-120 [10.1051/0004-6361/201220129].
C. Lardo;E. Pancino;A. Mucciarelli;A. P. Milone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/153284
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact