We present RSLR, an implicit higher-order characterization of the class PP of those problems which can be decided in probabilistic polynomial time with error probability smaller than 1/2 . Analogously, a (less implicit) characterization of the class BPP can be obtained. RSLR is an extension of Hofmann’s SLR with a probabilistic primitive, which enjoys basic properties such as subject reduction and confluence. Polynomial time soundness of RSLR is obtained by syntactical means, as opposed to the standard literature on SLR-derived systems, which use semantics in an essential way.

A Higher-Order Characterization of Probabilistic Polynomial Time

DAL LAGO, UGO;
2012

Abstract

We present RSLR, an implicit higher-order characterization of the class PP of those problems which can be decided in probabilistic polynomial time with error probability smaller than 1/2 . Analogously, a (less implicit) characterization of the class BPP can be obtained. RSLR is an extension of Hofmann’s SLR with a probabilistic primitive, which enjoys basic properties such as subject reduction and confluence. Polynomial time soundness of RSLR is obtained by syntactical means, as opposed to the standard literature on SLR-derived systems, which use semantics in an essential way.
Lecture Notes in Computer ScienceFoundational and Practical Aspects of Resource Analysis
1
18
Ugo Dal Lago;Paolo Parisen Toldin
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/153229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact