A fundamental role for the endosymbiotic bacteria Wolbachia pipientis in the pathogenesis of Dirofilaria immitis infections has emerged in recent years. Diagnostic opportunities arising from this breakthrough have not yet been fully exploited. This study was aimed at developing conventional and real-time PCR assays to carry out a molecular survey in a convenience sample of cats living in an area where D. immitis is endemic and to evaluate the detection of bacterial DNA in blood as a surrogate assay for diagnosing filaria-associated syndromes in cats. COI and FtsZ loci were used as targets for D. immitis and Wolbachia PCR assays, respectively, and real-time TaqMan PCR assays were used only for Wolbachia. A convenience sample of 307 disease-affected or healthy cats examined at a University facility were PCR tested, and their medical records were investigated. Conventional nested PCR for Wolbachia amplified the endosymbionts of both D. immitis and D. repens, while real-time PCR was highly specific only for the former. Observed prevalences of 0.3 and 10.4% were found using conventional nested PCR assays for D. immitis and real-time PCR for Wolbachia, respectively. Similar prevalences were established using the Wolbachia nested PCR (98% concordance with real-time PCR). The group of Wolbachia-positive samples had a significantly higher proportion of subjects with respiratory signs (29.0% versus 9.7%; P = 0.002). The findings of this study indicate that a highly sensitive PCR assay can be used to detect the Wolbachia organism in the peripheral blood of cats with respiratory signs.
M. E. Turba, E. Zambon, A. Zannoni, S. Russo, F. Gentilini (2012). Detection of Wolbachia DNA in Blood for Diagnosing Filaria-Associated Syndromes in Cats. JOURNAL OF CLINICAL MICROBIOLOGY, 50, 2624-2630 [10.1128/JCM.00528-12].
Detection of Wolbachia DNA in Blood for Diagnosing Filaria-Associated Syndromes in Cats
ZAMBON, ELISA;ZANNONI, AUGUSTA;RUSSO, SAMANTA;GENTILINI, FABIO
2012
Abstract
A fundamental role for the endosymbiotic bacteria Wolbachia pipientis in the pathogenesis of Dirofilaria immitis infections has emerged in recent years. Diagnostic opportunities arising from this breakthrough have not yet been fully exploited. This study was aimed at developing conventional and real-time PCR assays to carry out a molecular survey in a convenience sample of cats living in an area where D. immitis is endemic and to evaluate the detection of bacterial DNA in blood as a surrogate assay for diagnosing filaria-associated syndromes in cats. COI and FtsZ loci were used as targets for D. immitis and Wolbachia PCR assays, respectively, and real-time TaqMan PCR assays were used only for Wolbachia. A convenience sample of 307 disease-affected or healthy cats examined at a University facility were PCR tested, and their medical records were investigated. Conventional nested PCR for Wolbachia amplified the endosymbionts of both D. immitis and D. repens, while real-time PCR was highly specific only for the former. Observed prevalences of 0.3 and 10.4% were found using conventional nested PCR assays for D. immitis and real-time PCR for Wolbachia, respectively. Similar prevalences were established using the Wolbachia nested PCR (98% concordance with real-time PCR). The group of Wolbachia-positive samples had a significantly higher proportion of subjects with respiratory signs (29.0% versus 9.7%; P = 0.002). The findings of this study indicate that a highly sensitive PCR assay can be used to detect the Wolbachia organism in the peripheral blood of cats with respiratory signs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.