We introduce the Characteristic Curvature as the curvature of the trajectories of the Hamiltonian vector field with respect to the normal direction to the isoenergetic surfaces; by using the Second Fundamental Form we relate it to the Classical and Levi Mean Curvature. Then we prove existence and uniqueness of viscosity solutions for the related Dirichlet problem and we show the Lipschitz regularity of the solutions under suitable hypotheses. At the end we show that neither Strong Comparison Principle nor Hopf Lemma hold for the Characteristic Curvature Operator.
Vittorio Martino (2012). On the characteristic curvature operator. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 11, 1911-1922 [10.3934/cpaa.2012.11.1911].
On the characteristic curvature operator
MARTINO, VITTORIO
2012
Abstract
We introduce the Characteristic Curvature as the curvature of the trajectories of the Hamiltonian vector field with respect to the normal direction to the isoenergetic surfaces; by using the Second Fundamental Form we relate it to the Classical and Levi Mean Curvature. Then we prove existence and uniqueness of viscosity solutions for the related Dirichlet problem and we show the Lipschitz regularity of the solutions under suitable hypotheses. At the end we show that neither Strong Comparison Principle nor Hopf Lemma hold for the Characteristic Curvature Operator.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.