We consider the nonhomogeneous Yamabe equation on a bounded set of the Heisenberg group $-\Delta_{\mathbb{H}} u=|u|^{q^* -2} u +f$, where $f$ is a small perturbation in the $C^0$ sense. Under suitable hypotheses, we will state a multiplicity existence result for positive solutions with zero Dirichlet boundary conditions.
Ali Maalaoui, Vittorio Martino (2013). Multiplicity result for a nonhomogeneous Yamabe type equation involving the Kohn Laplacian. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 399, 333-339 [10.1016/j.jmaa.2012.10.014].
Multiplicity result for a nonhomogeneous Yamabe type equation involving the Kohn Laplacian
MARTINO, VITTORIO
2013
Abstract
We consider the nonhomogeneous Yamabe equation on a bounded set of the Heisenberg group $-\Delta_{\mathbb{H}} u=|u|^{q^* -2} u +f$, where $f$ is a small perturbation in the $C^0$ sense. Under suitable hypotheses, we will state a multiplicity existence result for positive solutions with zero Dirichlet boundary conditions.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.