This article describes the preparation of thymol-doped acrylic resins by photopolymerization of solutions of thymol in tripropylenglycoldiacrylic monomer. This provides an easy, energy-saving, and environmental friendly process to prepare antibacterial plastics (fulfilling most of the "green chemistry" requirements). The results demonstrate that thymol can be included in the resin even at high concentration (up to 28.6%) without affecting the photocuring reaction and losing transparency. The glass transition temperature of the doped resin decreases when the thymol content increases, as it behaves like a plasticizer with respect to the acrylic resin. As indicated by HPLC analysis, thymol can be released in liquid media at a rate that depends on the chemical nature of the liquid. Evaluation by agar diffusion assays showed an antibacterial activity on both Gram-negative and Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli). The antibacterial activity can occur just on the plastic surface when the thymol-doped resins is applied as thin coating, while it is evident also in the surrounding agar medium for doped plastic discs, 1.2 mm thick with a concentration of thymol in the resin higher than 16.7%.
M. Degli Esposti, F. Pilati, M. Bondi, S. de Niederhausern, R. Iseppi, M. Toselli (2013). Preparation, characterization, and antibacterial activity of photocured thymol-doped acrylic resins. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 10(3), 371-379 [10.1007/s11998-012-9453-3].
Preparation, characterization, and antibacterial activity of photocured thymol-doped acrylic resins
M. Degli Esposti;TOSELLI, MAURIZIO
2013
Abstract
This article describes the preparation of thymol-doped acrylic resins by photopolymerization of solutions of thymol in tripropylenglycoldiacrylic monomer. This provides an easy, energy-saving, and environmental friendly process to prepare antibacterial plastics (fulfilling most of the "green chemistry" requirements). The results demonstrate that thymol can be included in the resin even at high concentration (up to 28.6%) without affecting the photocuring reaction and losing transparency. The glass transition temperature of the doped resin decreases when the thymol content increases, as it behaves like a plasticizer with respect to the acrylic resin. As indicated by HPLC analysis, thymol can be released in liquid media at a rate that depends on the chemical nature of the liquid. Evaluation by agar diffusion assays showed an antibacterial activity on both Gram-negative and Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli). The antibacterial activity can occur just on the plastic surface when the thymol-doped resins is applied as thin coating, while it is evident also in the surrounding agar medium for doped plastic discs, 1.2 mm thick with a concentration of thymol in the resin higher than 16.7%.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.