While monitoring the physico-chemical characteristics, trace elements and O-H-Sr-B isotopic data were obtained in superficial waters from a number of irrigations canals and ditches in the Ravenna coastal plain, in order to highlight the cycling of potentially toxic elements and the different sources of the solutes. Surveys were conducted during March and July 2008, and considered as representative of the waters in winter and summer, respectively. In summer, the water mass balance in the network is mostly controlled by the ingression of freshwaters from the Canale Emiliano Romagnolo (CER). The O-H isotopic data indicated that, in winter, waters are primarily recharged from Apennine catchments and undergo evaporation to different extents. The boron isotopic signature indicates the important role played by the marine component. A major seawater contribution was evidenced in canals close to the coastline; however, the process controlling the origin of dissolved boron is not solely related to direct mixing with sea water but comprises an additional source probably related to water-soil exchanges and boron of marine origin leaching, owing to the prolonged exposure of alluvial sediments to sea water. An additional boron contribution from the agricultural practice was is also evidenced. Calculation based on the conservative behaviour of chloride ions indicated that in canals and ditches not directly connected with the sea up to the 80% of the Sr budget did not originate from seawater, indicating a source from Al-silicate minerals and upporting the hypothesis of significant soil-water interactions and chemical exchanges. The positive correlation between pH and dissolved oxygen in winter waters is likely to reflect CO2 consumption during algal photosynthesis, favouring the in-situ generation of colloidal particles due to the oxidative precipitation of ferric iron oxy-hydroxides and probably small carbonate particles able to adsorb trace metals on their surface and contribute to the ecosystem dynamics facilitating the transport of metals and affecting their bio-availability and cycling. During summer, the input of freshwater from CER lowered the concentration of most ions and became superimposed to the evaporation-precipitation-exchange cycle, possibly dispersing the colloidal particles which could act as pollutant carriers and enhancing flocculation and precipitation, scavenging trace metals into the sediments.
Livia Vittori Antisari, Riccardo Petrini, Maddalena Pennisi, Serena Carbone, Alessandra Adorni-Braccesi, Umberto Aviani, et al. (2010). POTENTIALLY TOXIC ELEMENT CYCLES AND CHARACTERIZATION OF MULTIPLE SOURCES IN THE IRRIGATION DITCHES FROM THE RAVENNA COASTAL PLAIN THROUGH TRACE ELEMENTS AND ISOTOPE GEOCHEMISTRY. EQA, 3, 21-32 [10.6092/issn.2281-4485/3793].
POTENTIALLY TOXIC ELEMENT CYCLES AND CHARACTERIZATION OF MULTIPLE SOURCES IN THE IRRIGATION DITCHES FROM THE RAVENNA COASTAL PLAIN THROUGH TRACE ELEMENTS AND ISOTOPE GEOCHEMISTRY
VITTORI ANTISARI, LIVIA;CARBONE, SERENA;VIANELLO, GILMO
2010
Abstract
While monitoring the physico-chemical characteristics, trace elements and O-H-Sr-B isotopic data were obtained in superficial waters from a number of irrigations canals and ditches in the Ravenna coastal plain, in order to highlight the cycling of potentially toxic elements and the different sources of the solutes. Surveys were conducted during March and July 2008, and considered as representative of the waters in winter and summer, respectively. In summer, the water mass balance in the network is mostly controlled by the ingression of freshwaters from the Canale Emiliano Romagnolo (CER). The O-H isotopic data indicated that, in winter, waters are primarily recharged from Apennine catchments and undergo evaporation to different extents. The boron isotopic signature indicates the important role played by the marine component. A major seawater contribution was evidenced in canals close to the coastline; however, the process controlling the origin of dissolved boron is not solely related to direct mixing with sea water but comprises an additional source probably related to water-soil exchanges and boron of marine origin leaching, owing to the prolonged exposure of alluvial sediments to sea water. An additional boron contribution from the agricultural practice was is also evidenced. Calculation based on the conservative behaviour of chloride ions indicated that in canals and ditches not directly connected with the sea up to the 80% of the Sr budget did not originate from seawater, indicating a source from Al-silicate minerals and upporting the hypothesis of significant soil-water interactions and chemical exchanges. The positive correlation between pH and dissolved oxygen in winter waters is likely to reflect CO2 consumption during algal photosynthesis, favouring the in-situ generation of colloidal particles due to the oxidative precipitation of ferric iron oxy-hydroxides and probably small carbonate particles able to adsorb trace metals on their surface and contribute to the ecosystem dynamics facilitating the transport of metals and affecting their bio-availability and cycling. During summer, the input of freshwater from CER lowered the concentration of most ions and became superimposed to the evaporation-precipitation-exchange cycle, possibly dispersing the colloidal particles which could act as pollutant carriers and enhancing flocculation and precipitation, scavenging trace metals into the sediments.File | Dimensione | Formato | |
---|---|---|---|
POTENTIALLY TOXIC ELEMENT CYCLES AND.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
332.21 kB
Formato
Adobe PDF
|
332.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.