In order to obtain faster hydrogen sorption kinetics, MgH 2-Fe nanocomposites were prepared by high-energy ball milling. The MgH 2 decomposition was studied in samples obtained by changing in a systematic way both the catalyst amount and the degree of microstructural refinement. To this purpose, blends containing increasing Fe concentration have been ball milled in processing conditions able to impart different amount of structural defects. The resulting samples have been characterized by X-ray diffraction to investigate the microstructural features and the phase composition, while the powder morphology and the degree of catalyst dispersion were analyzed by scanning electron microscopy. Differential scanning calorimetry was carried out to characterize the hydrogen desorption behavior of these nanocomposites. Experimental results clearly show that the characteristics of the desorption process are dominated, among other factors, by the morphology of the catalyst dispersion, which in turns depends on the processing conditions and blend composition. In order to achieve low desorption temperatures the homogeneous catalyst dispersion in micron-size particles throughout the structure is required. This condition can be achieved by suitable tuning of the milling conditions and of the catalyst amount.

A.Bassetti, E.Bonetti, L.Pasquini, J.Grbovic, A.Montone, M.Vittori Antisari (2005). Hydrogen desorption from ball milled MgH2 catalyzed with Fe. THE EUROPEAN PHYSICAL JOURNAL. B, CONDENSED MATTER PHYSICS, 43, 19-27 [10.1140/epjb/e2005-00023-9].

Hydrogen desorption from ball milled MgH2 catalyzed with Fe

BONETTI, ENNIO;PASQUINI, LUCA;
2005

Abstract

In order to obtain faster hydrogen sorption kinetics, MgH 2-Fe nanocomposites were prepared by high-energy ball milling. The MgH 2 decomposition was studied in samples obtained by changing in a systematic way both the catalyst amount and the degree of microstructural refinement. To this purpose, blends containing increasing Fe concentration have been ball milled in processing conditions able to impart different amount of structural defects. The resulting samples have been characterized by X-ray diffraction to investigate the microstructural features and the phase composition, while the powder morphology and the degree of catalyst dispersion were analyzed by scanning electron microscopy. Differential scanning calorimetry was carried out to characterize the hydrogen desorption behavior of these nanocomposites. Experimental results clearly show that the characteristics of the desorption process are dominated, among other factors, by the morphology of the catalyst dispersion, which in turns depends on the processing conditions and blend composition. In order to achieve low desorption temperatures the homogeneous catalyst dispersion in micron-size particles throughout the structure is required. This condition can be achieved by suitable tuning of the milling conditions and of the catalyst amount.
2005
A.Bassetti, E.Bonetti, L.Pasquini, J.Grbovic, A.Montone, M.Vittori Antisari (2005). Hydrogen desorption from ball milled MgH2 catalyzed with Fe. THE EUROPEAN PHYSICAL JOURNAL. B, CONDENSED MATTER PHYSICS, 43, 19-27 [10.1140/epjb/e2005-00023-9].
A.Bassetti; E.Bonetti; L.Pasquini; J.Grbovic; A.Montone; M.Vittori Antisari
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/14863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 103
social impact