N-Myc is a transcription factor that forms heterodimers with the protein Max and binds gene promoters by recognizing a DNA sequence, CACGTG, called E-box. The identification of N-myc target genes is an important step for understanding N-Myc biological functions in both physiological and pathological contexts. In this study, we describe the identification of N-Myc-responsive genes through chromatin immunoprecipitation and methylationsensitive restriction analysis. Results show that N-Myc is a direct regulator of several identified genes, and that methylation of the CpG dinucleotide within the E-box prevents the access of N-Myc to gene promoters in vivo. Furthermore, methylation profile of the E-box within the promoters of EGFR and CASP8, two genes directly controlled by Myc, is cell type-specific, suggesting that differential E-box methylation may contribute to generating unique patterns of Myc-dependent transcription. This study illuminates a central role of DNA methylation in controlling N-Myc occupancy at gene promoters and modulating its transcriptional activity in cancer cells.
Perini G., Diolaiti D., Porro A., Della Valle G. (2005). In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 102, 12117-12123 [10.1073/pnas.0409097102].
In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation
PERINI, GIOVANNI;DIOLAITI, DANIEL;PORRO, ANTONIO;DELLA VALLE, GIULIANO
2005
Abstract
N-Myc is a transcription factor that forms heterodimers with the protein Max and binds gene promoters by recognizing a DNA sequence, CACGTG, called E-box. The identification of N-myc target genes is an important step for understanding N-Myc biological functions in both physiological and pathological contexts. In this study, we describe the identification of N-Myc-responsive genes through chromatin immunoprecipitation and methylationsensitive restriction analysis. Results show that N-Myc is a direct regulator of several identified genes, and that methylation of the CpG dinucleotide within the E-box prevents the access of N-Myc to gene promoters in vivo. Furthermore, methylation profile of the E-box within the promoters of EGFR and CASP8, two genes directly controlled by Myc, is cell type-specific, suggesting that differential E-box methylation may contribute to generating unique patterns of Myc-dependent transcription. This study illuminates a central role of DNA methylation in controlling N-Myc occupancy at gene promoters and modulating its transcriptional activity in cancer cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.