Usutu virus (USUV) is a mosquito-borne flavivirus, belonging to the Japanese encephalitis antigenic complex, that circulates among mosquitoes and birds. We describe and analyze the complete genome sequence of the first USUV strain isolated from an immunocompromised patient with neuroinvasive disease. This USUV isolate showed an overall nucleotide identity of 99% and 96%, respectively, with the genomes of isolates from Europe and Africa. Comparison of the human USUV complete polyprotein sequence with bird-derived strains, showed two unique amino acid substitutions. In particular, one substitution (S595G) was situated in the DIII domain of the viral Envelope protein that is recognized by flavivirus neutralizing antibodies. An additional amino acid substitution (D3425E) was identified in the RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein. This substitution is remarkable since E3425 is highly conserved among the other USUV isolates that were not associated with human infection. However, a similar substitution was observed in Japanese encephalitis and in West Nile viruses isolated from humans. Phylogenetic analysis of the human USUV strain revealed a close relationship with an Italian strain isolated in 2009. Analysis of synonymous nucleotide substitutions (SNSs) among the different USUV genomes showed a specific evolutionary divergence among different countries. In addition, 15 SNSs were identified as unique in the human isolate. We also identified four specific nucleotide substitutions in the 59 and 39 untranslated regions (UTRs) in the human isolate that were not present in the other USUV sequences. Our analyses provide the basis for further experimental studies aimed at defining the effective role of these mutations in the USUV genome, their potential role in the development of viral variants pathogenic for humans and their evolution and dispersal out of Africa.
Gaibani P, Cavrini F, Gould EA, Rossini G, Pierro A, Landini MP, et al. (2013). Comparative genomic and phylogenetic analysis of the first usutu virus isolate from a human patient presenting with neurological symptoms. PLOS ONE, 8(5), 1-10 [10.1371/journal.pone.0064761].
Comparative genomic and phylogenetic analysis of the first usutu virus isolate from a human patient presenting with neurological symptoms.
GAIBANI, PAOLO;CAVRINI, FRANCESCA;ROSSINI, GIADA;LANDINI, MARIA PAOLA;SAMBRI, VITTORIO
2013
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus, belonging to the Japanese encephalitis antigenic complex, that circulates among mosquitoes and birds. We describe and analyze the complete genome sequence of the first USUV strain isolated from an immunocompromised patient with neuroinvasive disease. This USUV isolate showed an overall nucleotide identity of 99% and 96%, respectively, with the genomes of isolates from Europe and Africa. Comparison of the human USUV complete polyprotein sequence with bird-derived strains, showed two unique amino acid substitutions. In particular, one substitution (S595G) was situated in the DIII domain of the viral Envelope protein that is recognized by flavivirus neutralizing antibodies. An additional amino acid substitution (D3425E) was identified in the RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein. This substitution is remarkable since E3425 is highly conserved among the other USUV isolates that were not associated with human infection. However, a similar substitution was observed in Japanese encephalitis and in West Nile viruses isolated from humans. Phylogenetic analysis of the human USUV strain revealed a close relationship with an Italian strain isolated in 2009. Analysis of synonymous nucleotide substitutions (SNSs) among the different USUV genomes showed a specific evolutionary divergence among different countries. In addition, 15 SNSs were identified as unique in the human isolate. We also identified four specific nucleotide substitutions in the 59 and 39 untranslated regions (UTRs) in the human isolate that were not present in the other USUV sequences. Our analyses provide the basis for further experimental studies aimed at defining the effective role of these mutations in the USUV genome, their potential role in the development of viral variants pathogenic for humans and their evolution and dispersal out of Africa.File | Dimensione | Formato | |
---|---|---|---|
journal.pone.0064761.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
pone.0064761.s001.doc
accesso aperto
Descrizione: Table S1: Comparison of the nucleotide and corresponding amino-acid substitutions between Bologna/09 (human isolate) and African (SAAR-1776 strain) and European (Vienna 2001, Meise H 2002, Budapest 2005, Italia 2009 and Germany 2011) USUV isolates
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
86 kB
Formato
Microsoft Word
|
86 kB | Microsoft Word | Visualizza/Apri |
pone.0064761.s001.doc
accesso aperto
Descrizione: Table S1: Comparison of the nucleotide and corresponding amino-acid substitutions between Bologna/09 (human isolate) and African (SAAR-1776 strain) and European (Vienna 2001, Meise H 2002, Budapest 2005, Italia 2009 and Germany 2011) USUV isolates
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
86 kB
Formato
Microsoft Word
|
86 kB | Microsoft Word | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.