Rotational spectroscopy is known to be a technique that is widely used to infer information on molecular structure and dynamics. In the last few decades, its role in the field of atmospheric and astrophysical investigations has rapidly grown. However, several are the challenging aspects in rotational spectroscopy, since the detection and analysis of spectra as well as interpretation of obtained results are not at all straightforward. Quantum chemistry has reached such an accuracy that can be used to disentangle these challenging situations by guiding the experimental investigation, assisting in the determination of the spectroscopic parameters, and extracting information of chemical interest. This perspective provides an overview of the theoretical background and computational requirements needed for the accurate evaluation of the spectroscopic parameters of relevance to rotational spectroscopy. The role of theory in guiding and supporting experiment is detailed through a few examples, and the interplay of experiment and theory is discussed in terms of the information of physical and chemical interest that can be derived.
Cristina Puzzarini (2013). Rotational spectroscopy meets theory. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 15, 6595-6607 [10.1039/c3cp44301a].
Rotational spectroscopy meets theory
PUZZARINI, CRISTINA
2013
Abstract
Rotational spectroscopy is known to be a technique that is widely used to infer information on molecular structure and dynamics. In the last few decades, its role in the field of atmospheric and astrophysical investigations has rapidly grown. However, several are the challenging aspects in rotational spectroscopy, since the detection and analysis of spectra as well as interpretation of obtained results are not at all straightforward. Quantum chemistry has reached such an accuracy that can be used to disentangle these challenging situations by guiding the experimental investigation, assisting in the determination of the spectroscopic parameters, and extracting information of chemical interest. This perspective provides an overview of the theoretical background and computational requirements needed for the accurate evaluation of the spectroscopic parameters of relevance to rotational spectroscopy. The role of theory in guiding and supporting experiment is detailed through a few examples, and the interplay of experiment and theory is discussed in terms of the information of physical and chemical interest that can be derived.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.