We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templates with an active galactic nucleus (AGN) contribution. High accuracy in the derived photometric redshifts was accomplished as the result of (1) photometry in up to 30 bands with high-significance detections, (2) a new set of SED templates, including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGNs and nonactive galaxies templates, and (3) multiepoch observations that have been used to correct for variability (most important for type 1 AGNs). The reliability of the photometric redshifts is evaluated using the subsample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of σ _{Δ z/(1+z_spec)} = 0.014 for i*<SUB> AB </SUB> < 22.5 (σ _{Δ z/(1+z_spec)} ˜ 0.015 for i*<SUB> AB </SUB> < 24.5). The high accuracies were accomplished for both type 2 (where the SED is often dominated by the host galaxy) and type 1 AGNs and QSOs out to z = 4.5. The number of outliers is a large improvement over previous photometric redshift estimates for X-ray-selected sources (4.0% and 4.8% outliers for i*<SUB> AB </SUB> < 22.5 and i*<SUB> AB </SUB> < 24.5, respectively). We show that the intermediate band photometry is vital to achieving accurate photometric redshifts for AGNs, whereas the broad SED coverage provided by mid-infrared (Spitzer/IRAC) bands is important to reduce the number of outliers for normal galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the NRC and CADC of Canada, the CNRS of France, TERAPIX and the University of Hawaii.

M. Salvato, G. Hasinger, O. Ilbert, G. Zamorani, M. Brusa, N. Z. Scoville, et al. (2009). Photometric Redshift and Classification for the XMM-COSMOS Sources. THE ASTROPHYSICAL JOURNAL, 690, 1250-1263 [10.1088/0004-637X/690/2/1250].

Photometric Redshift and Classification for the XMM-COSMOS Sources

BRUSA, MARCELLA;
2009

Abstract

We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templates with an active galactic nucleus (AGN) contribution. High accuracy in the derived photometric redshifts was accomplished as the result of (1) photometry in up to 30 bands with high-significance detections, (2) a new set of SED templates, including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGNs and nonactive galaxies templates, and (3) multiepoch observations that have been used to correct for variability (most important for type 1 AGNs). The reliability of the photometric redshifts is evaluated using the subsample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of σ _{Δ z/(1+z_spec)} = 0.014 for i* AB < 22.5 (σ _{Δ z/(1+z_spec)} ˜ 0.015 for i* AB < 24.5). The high accuracies were accomplished for both type 2 (where the SED is often dominated by the host galaxy) and type 1 AGNs and QSOs out to z = 4.5. The number of outliers is a large improvement over previous photometric redshift estimates for X-ray-selected sources (4.0% and 4.8% outliers for i* AB < 22.5 and i* AB < 24.5, respectively). We show that the intermediate band photometry is vital to achieving accurate photometric redshifts for AGNs, whereas the broad SED coverage provided by mid-infrared (Spitzer/IRAC) bands is important to reduce the number of outliers for normal galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the NRC and CADC of Canada, the CNRS of France, TERAPIX and the University of Hawaii.
2009
M. Salvato, G. Hasinger, O. Ilbert, G. Zamorani, M. Brusa, N. Z. Scoville, et al. (2009). Photometric Redshift and Classification for the XMM-COSMOS Sources. THE ASTROPHYSICAL JOURNAL, 690, 1250-1263 [10.1088/0004-637X/690/2/1250].
M. Salvato;G. Hasinger;O. Ilbert;G. Zamorani;M. Brusa;N. Z. Scoville;A. Rau;P. Capak;S. Arnouts;H. Aussel;M. Bolzonella;A. Buongiorno;N. Cappelluti;K....espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/143099
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 302
  • ???jsp.display-item.citation.isi??? 299
social impact