In the field of nanostructured materials, our research was focussed on the synthesis and applications of silicon based nanostructured films. In particular, we studied nanocrystalline Si and SiC thin films, having film thicknesses in the nanometer range and including nanometric grains, and compositionally modulated nanometric multilayers of a-Si3N4:H / a-SixN1-x:H. The Plasma Enhanced Chemical Vapor Deposition (PECVD) technique was used to deposit these materials at low temperature, which is advantageous for device applications. This paper is centred on our main results on p-type nanocrystalline Si (p nc-Si). The p nc-Si films were deposited by Very High Frequency (VHF) PECVD in high hydrogen dilution of the gas mixture at 170 °C. Our results on the application of these films in nanocrystalline Si / amorphous Si /crystalline Si heterojunction solar cells are discussed in details. The long range effects of plasma H atoms on the heterojunction nanostructure are studied by the simulation of optical spectra and the High Resolution Transmission Electron Microscopy (HRTEM) observations on the p nc-Si / i a-Si:H double layers deposited on c-Si substrates. The heterojunction built-in potential of these double layers is larger than in p a-Si:H / i a-Si:H structures and therefore in the nanocrystalline Si / amorphous Si /crystalline Si solar cell a Voc up to 640 mV can be obtained. The simulation of optical spectra and the HRTEM observations are reported and correlated with the corresponding solar cells characteristics.

Synthesis and applications of nanostructured and nanocrystalline silicon based thin films

CENTURIONI, EMANUELE;IENCINELLA, DANIELE;DESALVO, AGOSTINO;ZIGNANI, FLAVIO
2004

Abstract

In the field of nanostructured materials, our research was focussed on the synthesis and applications of silicon based nanostructured films. In particular, we studied nanocrystalline Si and SiC thin films, having film thicknesses in the nanometer range and including nanometric grains, and compositionally modulated nanometric multilayers of a-Si3N4:H / a-SixN1-x:H. The Plasma Enhanced Chemical Vapor Deposition (PECVD) technique was used to deposit these materials at low temperature, which is advantageous for device applications. This paper is centred on our main results on p-type nanocrystalline Si (p nc-Si). The p nc-Si films were deposited by Very High Frequency (VHF) PECVD in high hydrogen dilution of the gas mixture at 170 °C. Our results on the application of these films in nanocrystalline Si / amorphous Si /crystalline Si heterojunction solar cells are discussed in details. The long range effects of plasma H atoms on the heterojunction nanostructure are studied by the simulation of optical spectra and the High Resolution Transmission Electron Microscopy (HRTEM) observations on the p nc-Si / i a-Si:H double layers deposited on c-Si substrates. The heterojunction built-in potential of these double layers is larger than in p a-Si:H / i a-Si:H structures and therefore in the nanocrystalline Si / amorphous Si /crystalline Si solar cell a Voc up to 640 mV can be obtained. The simulation of optical spectra and the HRTEM observations are reported and correlated with the corresponding solar cells characteristics.
2004
IAEA-TECDOC-1438 Emerging applications of radiation in nanotechnology
45
54
R. Rizzoli; C. Summonte; E. Centurioni; D. Iencinella; A. Migliori; A. Desalvo; F. Zignani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/14155
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact