Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960–1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070–2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258–616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

Pauline N. Mollema, Marco Antonellini (2013). Seasonal variation in natural recharge of coastal aquifers. HYDROGEOLOGY JOURNAL, 21, 787-797 [10.1007/s10040-013-0960-9].

Seasonal variation in natural recharge of coastal aquifers

MOLLEMA, PAULINE NELLA;ANTONELLINI, MARCO
2013

Abstract

Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960–1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070–2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258–616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.
2013
Pauline N. Mollema, Marco Antonellini (2013). Seasonal variation in natural recharge of coastal aquifers. HYDROGEOLOGY JOURNAL, 21, 787-797 [10.1007/s10040-013-0960-9].
Pauline N. Mollema;Marco Antonellini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/140603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact