Resonance attachment of low-energy electrons to xenobiotic molecules, 2,4-dichlorophenoxyacetic acid (2,4-D), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE), was investigated under gas-phase conditions by means of the complementary experimental techniques. Electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS), in the 0-6 eV and 0-15 eV energy range, respectively, were applied with the aim of modeling the behavior of these pesticide molecules under reductive conditions in vivo. Formation of long-lived parent molecular anions and fragment negative ions was observed at incident electron energies very close to zero, in agreement with the results of density functional theory calculations. The gas-phase DEA process, analogous to dissociative electron transfer in solution, was considered as a model for the initial step which occurs in the intermembrane space of mitochondria when a xenobiotic molecule captures an electron “leaked” from the respiratory chain. A possible involvement of the fragments produced by DEA to the pesticides under investigation into cellular processes is discussed. It is concluded that the free radicals and potential DNA adducts formed by DEA are expected to be dangerous for mitochondrial functionalities, while several of the products observed could act as messenger molecules, thus interfering with the normal cellular signaling pathways.

S.A. Pshenichnyuk, A. Modelli (2013). Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics?. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 15(23), 9125-9135 [10.1039/c3cp50614b].

Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics?

MODELLI, ALBERTO
2013

Abstract

Resonance attachment of low-energy electrons to xenobiotic molecules, 2,4-dichlorophenoxyacetic acid (2,4-D), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE), was investigated under gas-phase conditions by means of the complementary experimental techniques. Electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS), in the 0-6 eV and 0-15 eV energy range, respectively, were applied with the aim of modeling the behavior of these pesticide molecules under reductive conditions in vivo. Formation of long-lived parent molecular anions and fragment negative ions was observed at incident electron energies very close to zero, in agreement with the results of density functional theory calculations. The gas-phase DEA process, analogous to dissociative electron transfer in solution, was considered as a model for the initial step which occurs in the intermembrane space of mitochondria when a xenobiotic molecule captures an electron “leaked” from the respiratory chain. A possible involvement of the fragments produced by DEA to the pesticides under investigation into cellular processes is discussed. It is concluded that the free radicals and potential DNA adducts formed by DEA are expected to be dangerous for mitochondrial functionalities, while several of the products observed could act as messenger molecules, thus interfering with the normal cellular signaling pathways.
2013
S.A. Pshenichnyuk, A. Modelli (2013). Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics?. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 15(23), 9125-9135 [10.1039/c3cp50614b].
S.A. Pshenichnyuk; A. Modelli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/140399
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact