The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended-quasi-thermal-incompressible (EQTI) model, recently proposed by Gouin & Ruggeri [H. Gouin, T. Ruggeri, Internat. J. Non Linear Mech. 47 688–693 (2012)]. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.

A. Mentrelli, T. Ruggeri (2013). Shock and rarefaction waves in a hyperbolic model of incompressible materials. ATTI DELLA ACCADEMIA PELORITANA DEI PERICOLANTI, CLASSE DI SCIENZE FISICHE, MATEMATICHE E NATURALI, 91(S1), A13-1-A13-16 [10.1478/AAPP.91S1A13].

Shock and rarefaction waves in a hyperbolic model of incompressible materials

MENTRELLI, ANDREA;RUGGERI, TOMMASO ANTONIO
2013

Abstract

The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended-quasi-thermal-incompressible (EQTI) model, recently proposed by Gouin & Ruggeri [H. Gouin, T. Ruggeri, Internat. J. Non Linear Mech. 47 688–693 (2012)]. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.
2013
A. Mentrelli, T. Ruggeri (2013). Shock and rarefaction waves in a hyperbolic model of incompressible materials. ATTI DELLA ACCADEMIA PELORITANA DEI PERICOLANTI, CLASSE DI SCIENZE FISICHE, MATEMATICHE E NATURALI, 91(S1), A13-1-A13-16 [10.1478/AAPP.91S1A13].
A. Mentrelli; T. Ruggeri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/138210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact