In this paper, we prove existence and uniqueness of Lipschitz continuous viscosity solutions for Dirichlet problems involving a class a fully non-linear operators on Lie groups. In particular, we consider the elementary symmetric functions of the eigenvalues of the Hessian built with left-invariant vector fields.

Vittorio Martino, Annamaria Montanari (2014). Lipschitz Continuous Viscosity Solutions for a Class of Fully Nonlinear Equations on Lie Groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 24(1), 169-189 [10.1007/s12220-012-9332-2].

Lipschitz Continuous Viscosity Solutions for a Class of Fully Nonlinear Equations on Lie Groups

MARTINO, VITTORIO;MONTANARI, ANNAMARIA
2014

Abstract

In this paper, we prove existence and uniqueness of Lipschitz continuous viscosity solutions for Dirichlet problems involving a class a fully non-linear operators on Lie groups. In particular, we consider the elementary symmetric functions of the eigenvalues of the Hessian built with left-invariant vector fields.
2014
Vittorio Martino, Annamaria Montanari (2014). Lipschitz Continuous Viscosity Solutions for a Class of Fully Nonlinear Equations on Lie Groups. THE JOURNAL OF GEOMETRIC ANALYSIS, 24(1), 169-189 [10.1007/s12220-012-9332-2].
Vittorio Martino; Annamaria Montanari
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/136219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact