In R^3, Lipschitz continuous viscosity solutions to the K-prescribed Levi curvature equation are smooth and strictly pseudoconvex if K is smooth and strictly positive; see [5]. We show here that in R^2n+1, n > 1, a similar result does not hold; that is, we prove the existence in C^n+1, n > 1, of nonsmooth pseudoconvex hypersurfaces with smooth Levi curvature.
Cristian E. Gutiérrez, Ermanno Lanconelli, Annamaria Montanari (2013). Nonsmooth hypersurfaces with smooth Levi curvature. NONLINEAR ANALYSIS, 76, 115-121 [10.1016/j.na.2012.08.008].
Nonsmooth hypersurfaces with smooth Levi curvature
LANCONELLI, ERMANNO;MONTANARI, ANNAMARIA
2013
Abstract
In R^3, Lipschitz continuous viscosity solutions to the K-prescribed Levi curvature equation are smooth and strictly pseudoconvex if K is smooth and strictly positive; see [5]. We show here that in R^2n+1, n > 1, a similar result does not hold; that is, we prove the existence in C^n+1, n > 1, of nonsmooth pseudoconvex hypersurfaces with smooth Levi curvature.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.