In R^3, Lipschitz continuous viscosity solutions to the K-prescribed Levi curvature equation are smooth and strictly pseudoconvex if K is smooth and strictly positive; see [5]. We show here that in R^2n+1, n > 1, a similar result does not hold; that is, we prove the existence in C^n+1, n > 1, of nonsmooth pseudoconvex hypersurfaces with smooth Levi curvature.

Cristian E. Gutiérrez, Ermanno Lanconelli, Annamaria Montanari (2013). Nonsmooth hypersurfaces with smooth Levi curvature. NONLINEAR ANALYSIS, 76, 115-121 [10.1016/j.na.2012.08.008].

Nonsmooth hypersurfaces with smooth Levi curvature

LANCONELLI, ERMANNO;MONTANARI, ANNAMARIA
2013

Abstract

In R^3, Lipschitz continuous viscosity solutions to the K-prescribed Levi curvature equation are smooth and strictly pseudoconvex if K is smooth and strictly positive; see [5]. We show here that in R^2n+1, n > 1, a similar result does not hold; that is, we prove the existence in C^n+1, n > 1, of nonsmooth pseudoconvex hypersurfaces with smooth Levi curvature.
2013
Cristian E. Gutiérrez, Ermanno Lanconelli, Annamaria Montanari (2013). Nonsmooth hypersurfaces with smooth Levi curvature. NONLINEAR ANALYSIS, 76, 115-121 [10.1016/j.na.2012.08.008].
Cristian E. Gutiérrez;Ermanno Lanconelli;Annamaria Montanari
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/136217
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact