We define a map between the set of permutations that avoid either the four patterns 3214, 3241, 4213, 4231 or 3124, 3142, 4123, 4132, and the set of Dyck prefixes. This map, when restricted to either of the two classes, turns out to be a bijection that allows us to determine some notable features of these permutations, such as the distribution of the statistics “number of ascents”, “number of left-to-right maxima”, “first element”, and “position of the maximum element”.

M. Barnabei, F. Bonetti, M. Silimbani (2013). Two Permutation Classes Enumerated by the Central Binomial Coefficients. JOURNAL OF INTEGER SEQUENCES, 16(3), 1-21.

Two Permutation Classes Enumerated by the Central Binomial Coefficients

BARNABEI, MARILENA;BONETTI, FLAVIO;SILIMBANI, MATTEO
2013

Abstract

We define a map between the set of permutations that avoid either the four patterns 3214, 3241, 4213, 4231 or 3124, 3142, 4123, 4132, and the set of Dyck prefixes. This map, when restricted to either of the two classes, turns out to be a bijection that allows us to determine some notable features of these permutations, such as the distribution of the statistics “number of ascents”, “number of left-to-right maxima”, “first element”, and “position of the maximum element”.
2013
M. Barnabei, F. Bonetti, M. Silimbani (2013). Two Permutation Classes Enumerated by the Central Binomial Coefficients. JOURNAL OF INTEGER SEQUENCES, 16(3), 1-21.
M. Barnabei; F. Bonetti; M. Silimbani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/134215
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact