Coordination models and languages are meant to provide abstractions and mechanisms to harness the space of interaction as one of the foremost sources of complexity in computational systems. Nature-inspired computing aims at understanding the mechanisms and patterns of complex natural systems in order to bring their most desirable features to computational systems. Thus, the promise of nature-inspired coordination models is to prove themselves fundamental in the design of complex computational systems—such as intelligent, knowledge-intensive, pervasive, adaptive, and self-organising ones. In this paper, we survey the most relevant nature-inspired coordination models in the literature, focussing in particular on tuple-based models, and foresee the most interesting research trends in the field.
Andrea Omicini (2013). Nature-inspired Coordination Models: Current Status, Future Trends. ISRN SOFTWARE ENGINEERING, 2013, 1-13 [10.1155/2013/384903].
Nature-inspired Coordination Models: Current Status, Future Trends
OMICINI, ANDREA
2013
Abstract
Coordination models and languages are meant to provide abstractions and mechanisms to harness the space of interaction as one of the foremost sources of complexity in computational systems. Nature-inspired computing aims at understanding the mechanisms and patterns of complex natural systems in order to bring their most desirable features to computational systems. Thus, the promise of nature-inspired coordination models is to prove themselves fundamental in the design of complex computational systems—such as intelligent, knowledge-intensive, pervasive, adaptive, and self-organising ones. In this paper, we survey the most relevant nature-inspired coordination models in the literature, focussing in particular on tuple-based models, and foresee the most interesting research trends in the field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.