An existence-uniqueness theorem is proved about a minimum cost order for a class of inventory models whose holding costs grow according to a stock level power law. The outcomes of a previous work of two of the authors are then extended to different environments: i.e. when the holding costs change during time generalizing the Weiss model, or with invariable holding costs but adopting a backordering strategy. Application cases are provided assuming several functional behaviors of demand versus the stock level

Mathematical properties of EOQ models with special cost structure

GAMBINI, ALESSANDRO;MINGARI SCARPELLO, GIOVANNI;RITELLI, DANIELE
2013

Abstract

An existence-uniqueness theorem is proved about a minimum cost order for a class of inventory models whose holding costs grow according to a stock level power law. The outcomes of a previous work of two of the authors are then extended to different environments: i.e. when the holding costs change during time generalizing the Weiss model, or with invariable holding costs but adopting a backordering strategy. Application cases are provided assuming several functional behaviors of demand versus the stock level
Gambini A.; Mingari Scarpello G; Ritelli D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/133755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact