Colorectal cancer (CRC) is a major health problem causing significant morbidity and mortality. During the last decade, results from different studies indicate that the pathogenetic mechanisms of CRC encompass tumour microenvironment, emphasizing a tight correlation with aging, inflammation, nutrition, gut microbiome composition and epigenetic modifications. Aging is one of the most important risk factors for the development of a wide range of neoplasies, including CRC, as it represents the general framework in which the tumor environment evolves. Together, these elements likely contribute to the carcinogenic process with specific effects, impacts and roles in the different stages of the tumor progression. CRCs evolve through loops of deregulated inflammatory stimuli which are sustained by DNA damage signaling pathways, dysbiosis of gut microbiota (GM) and epigenetic re-modelling (DNA methylation). To date no studies address those elements simultaneously. The synergic analysis of such parameters could provide new biological insights and effective biomarkers that could have applications in prevention, molecular diagnosis, prognosis and treatment of CRC.

Colorectal Cancer Microenvironment: Among Nutrition, Gut Microbiota, Inflammation and Epigenetics

GARAGNANI, PAOLO;PIRAZZINI, CHIARA;FRANCESCHI, CLAUDIO
2013

Abstract

Colorectal cancer (CRC) is a major health problem causing significant morbidity and mortality. During the last decade, results from different studies indicate that the pathogenetic mechanisms of CRC encompass tumour microenvironment, emphasizing a tight correlation with aging, inflammation, nutrition, gut microbiome composition and epigenetic modifications. Aging is one of the most important risk factors for the development of a wide range of neoplasies, including CRC, as it represents the general framework in which the tumor environment evolves. Together, these elements likely contribute to the carcinogenic process with specific effects, impacts and roles in the different stages of the tumor progression. CRCs evolve through loops of deregulated inflammatory stimuli which are sustained by DNA damage signaling pathways, dysbiosis of gut microbiota (GM) and epigenetic re-modelling (DNA methylation). To date no studies address those elements simultaneously. The synergic analysis of such parameters could provide new biological insights and effective biomarkers that could have applications in prevention, molecular diagnosis, prognosis and treatment of CRC.
P. Garagnani; C. Pirazzini; C. Franceschi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/133678
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 33
social impact