This paper introduces a novel class of models for binary data, which we call log-mean linear models. They are specified by linear constraints on the log-mean linear parameter, defined as a log-linear expansion of the mean parameter of the multivariate Bernoulli distribution. We show that marginal independence relationships between variables can be specified by setting certain log-mean linear interactions to zero and,more specifically, that graphical models of marginal independence are log-mean linear models. Our approach overcomes some drawbacks of the existing parameterizations of graphical models of marginal independence.

Log-mean linear models for binary data

ROVERATO, ALBERTO;LUPPARELLI, MONIA;
2013

Abstract

This paper introduces a novel class of models for binary data, which we call log-mean linear models. They are specified by linear constraints on the log-mean linear parameter, defined as a log-linear expansion of the mean parameter of the multivariate Bernoulli distribution. We show that marginal independence relationships between variables can be specified by setting certain log-mean linear interactions to zero and,more specifically, that graphical models of marginal independence are log-mean linear models. Our approach overcomes some drawbacks of the existing parameterizations of graphical models of marginal independence.
Roverato A.; Lupparelli M. ; La Rocca L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/133675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact