We consider a class of degenerate Ornstein-Uhlenbeck operators in $\mathbb{R}^{N}$, of the kind \[\mathcal{A}\equiv\sum_{i,j=1}^{p_{0}}a_{ij}\left( x\right) \partial _{x_{i}x_{j}}^{2}+\sum_{i,j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}\] where $\left( a_{ij}\right) $ is symmetric uniformly positive definite on $\mathbb{R}^{p_{0}}$ ($p_{0}\leq N$), with uniformly continuous and bounded entries, and $\left( b_{ij}\right) $ is a constant matrix such that the frozen operator $\mathcal{A}_{x_{0}}$ corresponding to $a_{ij}\left( x_{0}\right) $ is hypoelliptic. For this class of operators we prove global $L^{p}$ estimates ($1<p<\infty$) of the kind: \[ \left\Vert \partial_{x_{i}x_{j}}^{2}u\right\Vert _{L^{p}\left( \mathbb{R}^{N}\right) }\leq c\left\{ \left\Vert \mathcal{A}u\right\Vert _{L^{p}\left( \mathbb{R}^{N}\right) }+\left\Vert u\right\Vert _{L^{p}\left( \mathbb{R} ^{N}\right) }\right\} \text{ for }i,j=1,2,...,p_{0}. \] We obtain the previous estimates as a byproduct of the following one, which is of interest in its own: \[ \left\Vert \partial_{x_{i}x_{j}}^{2}u\right\Vert _{L^{p}\left( S_{T}\right) }\leq c\left\{ \left\Vert Lu\right\Vert _{L^{p}\left( S_{T}\right) }+\left\Vert u\right\Vert _{L^{p}\left( S_{T}\right) }\right\} \] for any $u\in C_{0}^{\infty}\left( S_{T}\right) ,$ where $S_{T}$ is the strip $\mathbb{R}^{N}\times\left[ -T,T\right]$, $T$ small, and $L$ is the Kolmogorov-Fokker-Planck operator \[ L\equiv\sum_{i,j=1}^{p_{0}}a_{ij}\left( x,t\right) \partial_{x_{i}x_{j}}^{2}+\sum_{i,j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}-\partial_{t}\] with uniformly continuous and bounded $a_{ij}$'s.

M. Bramanti, G. Cupini, E. Lanconelli, E.Priola (2013). Global L^p estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients. MATHEMATISCHE NACHRICHTEN, 286(11-12), 1087-1101 [10.1002/mana.201200189].

Global L^p estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients

CUPINI, GIOVANNI;LANCONELLI, ERMANNO;
2013

Abstract

We consider a class of degenerate Ornstein-Uhlenbeck operators in $\mathbb{R}^{N}$, of the kind \[\mathcal{A}\equiv\sum_{i,j=1}^{p_{0}}a_{ij}\left( x\right) \partial _{x_{i}x_{j}}^{2}+\sum_{i,j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}\] where $\left( a_{ij}\right) $ is symmetric uniformly positive definite on $\mathbb{R}^{p_{0}}$ ($p_{0}\leq N$), with uniformly continuous and bounded entries, and $\left( b_{ij}\right) $ is a constant matrix such that the frozen operator $\mathcal{A}_{x_{0}}$ corresponding to $a_{ij}\left( x_{0}\right) $ is hypoelliptic. For this class of operators we prove global $L^{p}$ estimates ($1
2013
M. Bramanti, G. Cupini, E. Lanconelli, E.Priola (2013). Global L^p estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients. MATHEMATISCHE NACHRICHTEN, 286(11-12), 1087-1101 [10.1002/mana.201200189].
M. Bramanti; G. Cupini; E. Lanconelli; E.Priola
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/133095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact