In the United States, estimation of flood frequency quantiles at ungaged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e. flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, Canonical kriging, CK, (or physiographical-space based interpolation, PSBI) and Topological kriging, TK, (or Top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized-least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10-, 50-, 100- and 500-yr floods for 61 streamgauges in the Southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatment of spatial correlation when using regression-based versus spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.
S.A. Archfield, A. Pugliese, Castellarin A., Skøien J. O., Kiang J. E. (2012). Topological and canonical kriging for design-flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?. HYDROLOGY AND EARTH SYSTEM SCIENCES DISCUSSIONS, 9, 12193-12226 [10.5194/hessd-9-12193-2012].
Topological and canonical kriging for design-flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?
PUGLIESE, ALESSIO;CASTELLARIN, ATTILIO;
2012
Abstract
In the United States, estimation of flood frequency quantiles at ungaged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e. flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, Canonical kriging, CK, (or physiographical-space based interpolation, PSBI) and Topological kriging, TK, (or Top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized-least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10-, 50-, 100- and 500-yr floods for 61 streamgauges in the Southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatment of spatial correlation when using regression-based versus spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.