The frequency-based beam steering concept effectively supports Guided-Wave-based Structural Health Monitoring (SHM) by enabling directional waveguide inspection. This is implemented by acoustic transducers whose peculiar shapes provide different wavelength tuning in different directions. When these devices are used for guided wave (GW) sensing, spatial filtering of the propagating wavefield results in a prominent frequency component within the recorded signal spectrum, which can be uniquely associated with the direction of an incoming wave. A sensor geometry whose 2D spatial Fourier Transform produces a spiral-like distribution of maxima in the wavenumber domain allows for one-to-one frequency-angle correspondence in the [0°, 180°] range. Prototypes of this wavenumber spiral frequency steerable acoustic transducer (WS-FSAT) have been fabricated by patterning the electrodes' shape on a metallized polyvinylidene fluoride (PVDF) substrate through inkjet printing. Prototype testing in various pitch-catch configurations demonstrates accurate 2D localization of acoustic sources and scattering events by processing a single output signal. Extremely easy, quick and inexpensive fabrication approach, along with very low hardware and computational requirements make the proposed FSAT an ideal candidate for a wide range of in-situ, low-cost and wireless SHM applications.

E. Baravelli, M. Senesi, D. Gottfried, L. De Marchi, M. Ruzzene (2012). Inkjet fabrication of spiral frequency-steerable acoustic transducers (FSATs). s.l : The International Society for Optical Engineering [10.1117/12.911980].

Inkjet fabrication of spiral frequency-steerable acoustic transducers (FSATs)

BARAVELLI, EMANUELE;DE MARCHI, LUCA;
2012

Abstract

The frequency-based beam steering concept effectively supports Guided-Wave-based Structural Health Monitoring (SHM) by enabling directional waveguide inspection. This is implemented by acoustic transducers whose peculiar shapes provide different wavelength tuning in different directions. When these devices are used for guided wave (GW) sensing, spatial filtering of the propagating wavefield results in a prominent frequency component within the recorded signal spectrum, which can be uniquely associated with the direction of an incoming wave. A sensor geometry whose 2D spatial Fourier Transform produces a spiral-like distribution of maxima in the wavenumber domain allows for one-to-one frequency-angle correspondence in the [0°, 180°] range. Prototypes of this wavenumber spiral frequency steerable acoustic transducer (WS-FSAT) have been fabricated by patterning the electrodes' shape on a metallized polyvinylidene fluoride (PVDF) substrate through inkjet printing. Prototype testing in various pitch-catch configurations demonstrates accurate 2D localization of acoustic sources and scattering events by processing a single output signal. Extremely easy, quick and inexpensive fabrication approach, along with very low hardware and computational requirements make the proposed FSAT an ideal candidate for a wide range of in-situ, low-cost and wireless SHM applications.
2012
Proceedings of SPIE
834817-1
834817-12
E. Baravelli, M. Senesi, D. Gottfried, L. De Marchi, M. Ruzzene (2012). Inkjet fabrication of spiral frequency-steerable acoustic transducers (FSATs). s.l : The International Society for Optical Engineering [10.1117/12.911980].
E. Baravelli; M. Senesi; D. Gottfried; L. De Marchi; M. Ruzzene
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/130064
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact