The aim of this work is to propose a methodology for estimating domains’ poverty rates. SAE model often rely on the normality of the area parameters, but this assumption may be inappropriate for rates. As different rates are obtained by using different, increasing thresholds, we propose a multivariate hierarchical Normal-Logistic-Normal (NLN) model that constraints the estimates to monotonically increase with the thresholds. Moreover, considering that also the assumption of normality of the direct estimators is not satisfying (the distribution of poverty rates is left truncated at 0 and possibly skewed) we introduce, in the univariate context, a Beta sampling models that leads to a Beta-Logistic small area model (BL). Results obtained show both the NLN and the BL models perform considerably better then more ‘usual’ models based on Normality. A Hierarchical Bayesian approach to estimation, where posterior distributions are approximated by means of MCMC computation methods, is adopted.

Fabrizi E., Ferrante M.R., Pacei S., Trivisano C. (2009). Small Domain Estimation of Poverty Rates Based on EU Survey on Income and Living Conditions. ELCHE : s.n..

Small Domain Estimation of Poverty Rates Based on EU Survey on Income and Living Conditions

FABRIZI, ENRICO;FERRANTE, MARIA;PACEI, SILVIA;TRIVISANO, CARLO
2009

Abstract

The aim of this work is to propose a methodology for estimating domains’ poverty rates. SAE model often rely on the normality of the area parameters, but this assumption may be inappropriate for rates. As different rates are obtained by using different, increasing thresholds, we propose a multivariate hierarchical Normal-Logistic-Normal (NLN) model that constraints the estimates to monotonically increase with the thresholds. Moreover, considering that also the assumption of normality of the direct estimators is not satisfying (the distribution of poverty rates is left truncated at 0 and possibly skewed) we introduce, in the univariate context, a Beta sampling models that leads to a Beta-Logistic small area model (BL). Results obtained show both the NLN and the BL models perform considerably better then more ‘usual’ models based on Normality. A Hierarchical Bayesian approach to estimation, where posterior distributions are approximated by means of MCMC computation methods, is adopted.
2009
SAE2009 CONFERENCE ON SMALL AREA ESTIMATION
1
4
Fabrizi E., Ferrante M.R., Pacei S., Trivisano C. (2009). Small Domain Estimation of Poverty Rates Based on EU Survey on Income and Living Conditions. ELCHE : s.n..
Fabrizi E.; Ferrante M.R.; Pacei S.; Trivisano C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/129769
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact