Resonate and Fire (R+F) models were introduced to account for many phenomena occurring in biological neurons showing sub-threshold oscillations of the membrane potential. In information technology, they are at the basis of Chaotic Spiking Oscillators (CSOs), exploitable in Pulse Coupled Neural Networks (PCNNs). This paper illustrates how the R+F paradigm can also be used for the testing of analog signal processing structures (and specifically filters), extending the Oscillation Based Test (OBT) framework. The rich dynamics of the R+F model is used to encode the block under test features and faults into pulse trains directly processable at the digital level. Means to achieve a precise characterization of firing times are provided and used for parametric testing. Considerations about the trade-off between testing times and accuracy are provided together with a practical example and simulation data.

S. Callegari, F. Pareschi, G. Setti, M. Soma (2013). On the usage of resonate and fire dynamics in the complex oscillation-based test approach. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 41(12), 1290-1317 [10.1002/cta.1857].

On the usage of resonate and fire dynamics in the complex oscillation-based test approach

CALLEGARI, SERGIO;
2013

Abstract

Resonate and Fire (R+F) models were introduced to account for many phenomena occurring in biological neurons showing sub-threshold oscillations of the membrane potential. In information technology, they are at the basis of Chaotic Spiking Oscillators (CSOs), exploitable in Pulse Coupled Neural Networks (PCNNs). This paper illustrates how the R+F paradigm can also be used for the testing of analog signal processing structures (and specifically filters), extending the Oscillation Based Test (OBT) framework. The rich dynamics of the R+F model is used to encode the block under test features and faults into pulse trains directly processable at the digital level. Means to achieve a precise characterization of firing times are provided and used for parametric testing. Considerations about the trade-off between testing times and accuracy are provided together with a practical example and simulation data.
2013
S. Callegari, F. Pareschi, G. Setti, M. Soma (2013). On the usage of resonate and fire dynamics in the complex oscillation-based test approach. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 41(12), 1290-1317 [10.1002/cta.1857].
S. Callegari; F. Pareschi; G. Setti; M. Soma
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/128735
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact