We show that every strongly-cyclic branched covering of a (1,1)-knot is a Dunwoody manifold. This result, together with the converse statement previously obtained by Grasselli and Mulazzani, proves that the class of Dunwoody manifolds coincides with the class of strongly-cyclic branched coverings of (1,1)-knots. As a consequence, we obtain a parametrization of (1,1)-knots by 4-tuples of integers. Moreover, using a representation of (1,1)-knots by the mapping class group of the twice punctured torus, we provide an algorithm which gives the parametrization of all torus knots in the 3-sphere.

All strongly-cyclic branched coverings of (1,1)-knots are Dunwoody manifolds

CATTABRIGA, ALESSIA;MULAZZANI, MICHELE
2004

Abstract

We show that every strongly-cyclic branched covering of a (1,1)-knot is a Dunwoody manifold. This result, together with the converse statement previously obtained by Grasselli and Mulazzani, proves that the class of Dunwoody manifolds coincides with the class of strongly-cyclic branched coverings of (1,1)-knots. As a consequence, we obtain a parametrization of (1,1)-knots by 4-tuples of integers. Moreover, using a representation of (1,1)-knots by the mapping class group of the twice punctured torus, we provide an algorithm which gives the parametrization of all torus knots in the 3-sphere.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/12872
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact