We prove an existence result for non-rotational constant mean curvature ends of graphs on the hyperbolic real plane. We use Schauder theory and a continuity method for solutions of the prescribed mean curvature equation on exterior domains. We also prove a fine property of the asymptotic behavior of the rotational ends introduced by Sa Earp and Toubiana
Titolo: | Constant mean curvature graphs on exterior domains of the hyperbolic plane | |
Autore/i: | CITTI, GIOVANNA; SENNI GUIDOTTI MAGNANI, COSIMO | |
Autore/i Unibo: | ||
Anno: | 2012 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00209-011-0948-x | |
Abstract: | We prove an existence result for non-rotational constant mean curvature ends of graphs on the hyperbolic real plane. We use Schauder theory and a continuity method for solutions of the prescribed mean curvature equation on exterior domains. We also prove a fine property of the asymptotic behavior of the rotational ends introduced by Sa Earp and Toubiana | |
Data prodotto definitivo in UGOV: | 2013-06-29 00:13:45 | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.