IBS is a prevalent functional gastrointestinal disorder, in which the microbiota has been demonstrated to play a role. An increasing number of studies have suggested how probiotics may alleviate IBS symptoms and several mechanisms of action have been proposed. In the present study we characterized the intestinal microbiota of 19 subjects suffering from diagnosed IBS using a fully validated High Taxonomic Fingerprint Microbiota Array (HTF-Microbi.Array). We demonstrated that the IBS microbiota is different from that of healthy individuals due to an unbalance in a number of commensal species, with an increase in relative abundance of lactobacilli, B. cereus and B. clausii, bifidobacteria, Clostridium cluster IX and E. rectale, and a decrease in abundance of Bacteroides/Prevotella group and Veillonella genus. Additionally, we demonstrated that some bacterial groups of the human intestinal microbiota, recently defined as pathobionts, are increased in concentration in the IBS microbiota. Furthermore, we aimed at investigating if the daily administration of a novel probiotic yogurt containing B. animalis subsp lactis Bb12 and K. marxianus B0399, recently demonstrated to have beneficial effects in the management of IBS symptoms, could impact on the biostructure of IBS microbiota, modulating its composition to counteract putative dysbiosis found in IBS subjects. Notably, we demonstrated that the beneficial effects associated to the probiotic preparation are not related to significant modifications in the composition of the human intestinal microbiota.
Maccaferri S., Candela M., Turroni S., Centanni M., Severgnini M., Consolandi C., et al. (2012). IBS-associated phylogenetic unbalances of the intestinal microbiota are not reverted by probiotic supplementation. GUT MICROBES, 3((5)), 406-413 [10.4161/gmic.21009].
IBS-associated phylogenetic unbalances of the intestinal microbiota are not reverted by probiotic supplementation
MACCAFERRI, SIMONE;CANDELA, MARCO;TURRONI, SILVIA;CENTANNI, MANUELA;BRIGIDI, PATRIZIA
2012
Abstract
IBS is a prevalent functional gastrointestinal disorder, in which the microbiota has been demonstrated to play a role. An increasing number of studies have suggested how probiotics may alleviate IBS symptoms and several mechanisms of action have been proposed. In the present study we characterized the intestinal microbiota of 19 subjects suffering from diagnosed IBS using a fully validated High Taxonomic Fingerprint Microbiota Array (HTF-Microbi.Array). We demonstrated that the IBS microbiota is different from that of healthy individuals due to an unbalance in a number of commensal species, with an increase in relative abundance of lactobacilli, B. cereus and B. clausii, bifidobacteria, Clostridium cluster IX and E. rectale, and a decrease in abundance of Bacteroides/Prevotella group and Veillonella genus. Additionally, we demonstrated that some bacterial groups of the human intestinal microbiota, recently defined as pathobionts, are increased in concentration in the IBS microbiota. Furthermore, we aimed at investigating if the daily administration of a novel probiotic yogurt containing B. animalis subsp lactis Bb12 and K. marxianus B0399, recently demonstrated to have beneficial effects in the management of IBS symptoms, could impact on the biostructure of IBS microbiota, modulating its composition to counteract putative dysbiosis found in IBS subjects. Notably, we demonstrated that the beneficial effects associated to the probiotic preparation are not related to significant modifications in the composition of the human intestinal microbiota.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.