We prove the simplicity and analyticity of the eigenvalues of the cubic oscillator Hamiltonian, $$ H(beta)=-frac{d^2}{dx^2}+x^2+isqrt{beta}x^3, $$ for $beta$ in the cut plane $C_c:=Cbackslash R_-$. Moreover, we prove that the spectrum consists of the perturbative eigenvalues ${E_n(beta)}_{ngeq 0}$ labeled by the constant number $n$ of nodes of the corresponding eigenfunctions. In addition, for all $betainC_c$, $E_n(beta)$ can be computed as the Stieltjes-Pad'e sum of its perturbation series at $beta=0$. This also gives an alternative proof of the fact that the spectrum of $H(beta)$ is real when $beta $ is a positive number. This way, the main results on the repulsive PT-symmetric and on the attractive quartic oscillators are extended to the cubic case.

V. Grecchi, A. Martinez (2013). The spectrum of the cubic oscillator. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 319(2), 479-500 [10.1007/s00220-012-1559-z].

The spectrum of the cubic oscillator

GRECCHI, VINCENZO;MARTINEZ, ANDRE' GEORGES
2013

Abstract

We prove the simplicity and analyticity of the eigenvalues of the cubic oscillator Hamiltonian, $$ H(beta)=-frac{d^2}{dx^2}+x^2+isqrt{beta}x^3, $$ for $beta$ in the cut plane $C_c:=Cbackslash R_-$. Moreover, we prove that the spectrum consists of the perturbative eigenvalues ${E_n(beta)}_{ngeq 0}$ labeled by the constant number $n$ of nodes of the corresponding eigenfunctions. In addition, for all $betainC_c$, $E_n(beta)$ can be computed as the Stieltjes-Pad'e sum of its perturbation series at $beta=0$. This also gives an alternative proof of the fact that the spectrum of $H(beta)$ is real when $beta $ is a positive number. This way, the main results on the repulsive PT-symmetric and on the attractive quartic oscillators are extended to the cubic case.
2013
V. Grecchi, A. Martinez (2013). The spectrum of the cubic oscillator. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 319(2), 479-500 [10.1007/s00220-012-1559-z].
V. Grecchi; A. Martinez
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/126928
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact