Three bacterial strains were isolated from activated sludge samples of two treatment plants receiving domestic and industrial wastewaters containing polyethoxylated nonylphenols. One strain (VA160) was isolated on rich medium, and the other two (BCaL1 and BCaL2) on mineral medium containing two industrial mixtures of nonylphenol ethoxylates as the sole carbon source. Strain VA160 was a Gram-positive, spore forming, filamentous bacterium, producing aggregates during growth in liquid medium. On the basis of phylogenetic analysis the strains were assigned to the Bacillus (VA160), Acinetobacter (BCaL1) and Stenothrophomonas (BCaL2) genera. High performance liquid chromatography analysis showed that only the Acinetobacter and Stenothrophomonas strains were involved in the degradation of polyethoxylated nonylphenols. Bacillus VA160, however, when co-cultured with the two degrading strains, induced the formation of cell aggregates and facilitated NPEO degradation. Fluorescent in situ hybridisation on the activated sludge sample from which Bacillus VA160 was isolated, using probes for Gram-positive bacteria with low G+C content, showed that bacteria belonging to this group specifically occurred inside the examined flocs. These observations suggest that the enhanced biodegradation of polyethoxylated nonylphenols in the three-membered co-culture is favoured by VA160-induced aggregation of BcaL1 and BcaL2 cells involved in the process.
DI GIOIA, D., Fambrini, L., Coppini, E., Fava, F., Barberio, C. (2004). Aggregation-based cooperation during bacterial aerobic degradation of polyethoxylated nonylphenols. RESEARCH IN MICROBIOLOGY, 155, 761-769 [10.1016/j.resmic.2004.05.015].
Aggregation-based cooperation during bacterial aerobic degradation of polyethoxylated nonylphenols.
DI GIOIA, DIANA;FAVA, FABIO;
2004
Abstract
Three bacterial strains were isolated from activated sludge samples of two treatment plants receiving domestic and industrial wastewaters containing polyethoxylated nonylphenols. One strain (VA160) was isolated on rich medium, and the other two (BCaL1 and BCaL2) on mineral medium containing two industrial mixtures of nonylphenol ethoxylates as the sole carbon source. Strain VA160 was a Gram-positive, spore forming, filamentous bacterium, producing aggregates during growth in liquid medium. On the basis of phylogenetic analysis the strains were assigned to the Bacillus (VA160), Acinetobacter (BCaL1) and Stenothrophomonas (BCaL2) genera. High performance liquid chromatography analysis showed that only the Acinetobacter and Stenothrophomonas strains were involved in the degradation of polyethoxylated nonylphenols. Bacillus VA160, however, when co-cultured with the two degrading strains, induced the formation of cell aggregates and facilitated NPEO degradation. Fluorescent in situ hybridisation on the activated sludge sample from which Bacillus VA160 was isolated, using probes for Gram-positive bacteria with low G+C content, showed that bacteria belonging to this group specifically occurred inside the examined flocs. These observations suggest that the enhanced biodegradation of polyethoxylated nonylphenols in the three-membered co-culture is favoured by VA160-induced aggregation of BcaL1 and BcaL2 cells involved in the process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.