The structural characterization of tie-rods is crucial for the safety assessments of historical buildings. The main parameters that characterize the behavior of tie-rods are the tensile force, the modulus of elasticity of the material and the rotational stiffness at both restraints. Several static, static–dynamic and pure dynamic nondestructive methods have been proposed in the last decades to identify such parameters. However, none of them is able to characterize all the four mentioned parameters. To fill this gap, in this work a procedure based on dynamic testing, addedmasses and genetic algorithms (GA) is proposed. The identification is driven by GA where the objective function is a metric of the discrepancy between the experimentally determined (by dynamic impact testing) and the numerically computed (by a fast and reliable finite element formulation) frequencies of vibration of some modified systems obtained from the tie-rod by adding a concentrated mass in specific positions. It is shown by a comprehensive numerical testing campaign in which several cases spanning from short, low-stressed, and almost hinged tie-rods to long, high-tensioned, and nearly clamped tie-rods, that the proposed strategy is reliable in the identification of the four unknowns. Finally, the procedure has been applied to characterize a metallic tie-rod located in Palazzo Paleotti, Bologna (Italy).

C. Gentilini, A. Marzani, M. Mazzotti (2013). Nondestructive characterization of tie-rods by means of dynamic testing, added masses and genetic algorithms. JOURNAL OF SOUND AND VIBRATION, 332(1), 76-101 [10.1016/j.jsv.2012.08.009].

Nondestructive characterization of tie-rods by means of dynamic testing, added masses and genetic algorithms

GENTILINI, CRISTINA;MARZANI, ALESSANDRO;MAZZOTTI, MATTEO
2013

Abstract

The structural characterization of tie-rods is crucial for the safety assessments of historical buildings. The main parameters that characterize the behavior of tie-rods are the tensile force, the modulus of elasticity of the material and the rotational stiffness at both restraints. Several static, static–dynamic and pure dynamic nondestructive methods have been proposed in the last decades to identify such parameters. However, none of them is able to characterize all the four mentioned parameters. To fill this gap, in this work a procedure based on dynamic testing, addedmasses and genetic algorithms (GA) is proposed. The identification is driven by GA where the objective function is a metric of the discrepancy between the experimentally determined (by dynamic impact testing) and the numerically computed (by a fast and reliable finite element formulation) frequencies of vibration of some modified systems obtained from the tie-rod by adding a concentrated mass in specific positions. It is shown by a comprehensive numerical testing campaign in which several cases spanning from short, low-stressed, and almost hinged tie-rods to long, high-tensioned, and nearly clamped tie-rods, that the proposed strategy is reliable in the identification of the four unknowns. Finally, the procedure has been applied to characterize a metallic tie-rod located in Palazzo Paleotti, Bologna (Italy).
2013
C. Gentilini, A. Marzani, M. Mazzotti (2013). Nondestructive characterization of tie-rods by means of dynamic testing, added masses and genetic algorithms. JOURNAL OF SOUND AND VIBRATION, 332(1), 76-101 [10.1016/j.jsv.2012.08.009].
C. Gentilini; A. Marzani; M. Mazzotti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/126004
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact