In F. Caselli (Involutory reflection groups and their models, J. Algebra 24:370–393, 2010), a uniform Gelfand model is constructed for all nonexceptional irreducible complex reflection groups which are involutory. Such models can be naturally decomposed into the direct sum of submodules indexed by Sn-conjugacy classes, and we present here a general result that relates the irreducible decomposition of these submodules with the projective Robinson–Schensted correspondence. This description also reflects, in a very explicit way, the existence of split representations for these groups.

F. Caselli, R. Fulci (2012). Gelfand models and Robinson-Schensted correspondence. JOURNAL OF ALGEBRAIC COMBINATORICS, 36, 175-207 [10.1007/s10801-011-0328-y].

Gelfand models and Robinson-Schensted correspondence

CASELLI, FABRIZIO;FULCI, ROBERTA
2012

Abstract

In F. Caselli (Involutory reflection groups and their models, J. Algebra 24:370–393, 2010), a uniform Gelfand model is constructed for all nonexceptional irreducible complex reflection groups which are involutory. Such models can be naturally decomposed into the direct sum of submodules indexed by Sn-conjugacy classes, and we present here a general result that relates the irreducible decomposition of these submodules with the projective Robinson–Schensted correspondence. This description also reflects, in a very explicit way, the existence of split representations for these groups.
2012
F. Caselli, R. Fulci (2012). Gelfand models and Robinson-Schensted correspondence. JOURNAL OF ALGEBRAIC COMBINATORICS, 36, 175-207 [10.1007/s10801-011-0328-y].
F. Caselli; R. Fulci
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/125536
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact