Hierarchical spatio-temporal models allow for the consideration and estimation of many sources of variability. A general spatio-temporal model can be written as the sum of a spatio-temporal trend and a spatio-temporal random effect. When spatial locations are considered to be homogeneous with respect to some exogenous features, the groups of locations may share a common spatial domain. Differences between groups can be highlighted both in the large-scale, spatio-temporal component and in the spatio-temporal dependence structure. When these differences are not included in the model specification, model performance and spatio-temporal predictions may be weak. This paper proposes a method for evaluating and comparing models that progressively include group differences. Hierarchical modeling under a Bayesian perspective is followed, allowing flexible models and the statistical assessment of results based on posterior predictive distributions. This procedure is applied to tropospheric ozone data in the Italian Emilia–Romagna region for 2001, where 30 monitoring sites are classified according to environmental laws into two groups by their relative position with respect to traffic emissions.

F. Bruno , D. Cocchi , L. Paci (2013). A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models. ASTA ADVANCES IN STATISTICAL ANALYSIS, 96, 93-108 [10.1007/s10182-012-0193-6].

A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models

BRUNO, FRANCESCA;COCCHI, DANIELA;PACI, LUCIA
2013

Abstract

Hierarchical spatio-temporal models allow for the consideration and estimation of many sources of variability. A general spatio-temporal model can be written as the sum of a spatio-temporal trend and a spatio-temporal random effect. When spatial locations are considered to be homogeneous with respect to some exogenous features, the groups of locations may share a common spatial domain. Differences between groups can be highlighted both in the large-scale, spatio-temporal component and in the spatio-temporal dependence structure. When these differences are not included in the model specification, model performance and spatio-temporal predictions may be weak. This paper proposes a method for evaluating and comparing models that progressively include group differences. Hierarchical modeling under a Bayesian perspective is followed, allowing flexible models and the statistical assessment of results based on posterior predictive distributions. This procedure is applied to tropospheric ozone data in the Italian Emilia–Romagna region for 2001, where 30 monitoring sites are classified according to environmental laws into two groups by their relative position with respect to traffic emissions.
2013
F. Bruno , D. Cocchi , L. Paci (2013). A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models. ASTA ADVANCES IN STATISTICAL ANALYSIS, 96, 93-108 [10.1007/s10182-012-0193-6].
F. Bruno ; D. Cocchi ; L. Paci
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/123593
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact