Within the MAC-GEO research project, funded by Regione Toscana and addressed to the exploitation of high enthalpy geothermal systems, the authors worked on the utilization and customization of the open source numerical simulator TOUGH2, as implemented in the code dedicated to model calibration iTOUGH2. TOUGH2 is one of the most used numerical simulation software for non-isothermal flow of multicomponent, multiphase fluids in one, two and three-dimensional porous and fractured media. Lacking an official Graphical User Interface tool for post-processing operations, several commercial and academic software have been developed to manage and display TOUGH2 input and output data files. Almost all of these tools seem to have limits to visualizing parameter values of the numerical model, work only with a predefined binary version of TOUGH2, and only a few of them can manage locally refined unstructured grids (i.e. Voronoi grids). To overcome these limitations, the authors have developed and tested a dedicated software application (called TOUGH2Viewer) for reading and managing TOUGH2 output files, written in Java and able to provide an interactive 3D view of the numerical model. Several functionalities have been implemented for block query and searching, contour mapping and 3D surface mapping of TOUGH2 primary variables (i.e. pressure, temperature, etc.). TOUGH2Viewer is also able to display 2D and 3D views of mass and heat flow between blocks, for each time step in which the simulation proceeds. The application described in this paper is under development to improve its functionalities; nevertheless the current software release is a valid support tool for post-processing that significantly improves the possibility to inspect the simulated data coming from TOUGH2.
S. Bondua', P. Berry, V. Bortolotti, C. Cormio (2012). TOUGH2Viewer: A post-processing tool for interactive 3D visualization of locally refined unstructured grids for TOUGH2. COMPUTERS & GEOSCIENCES, 46, 107-118 [10.1016/j.cageo.2012.04.008].
TOUGH2Viewer: A post-processing tool for interactive 3D visualization of locally refined unstructured grids for TOUGH2
BONDUA', STEFANO;BERRY, PAOLO;BORTOLOTTI, VILLIAM;CORMIO, CARLO
2012
Abstract
Within the MAC-GEO research project, funded by Regione Toscana and addressed to the exploitation of high enthalpy geothermal systems, the authors worked on the utilization and customization of the open source numerical simulator TOUGH2, as implemented in the code dedicated to model calibration iTOUGH2. TOUGH2 is one of the most used numerical simulation software for non-isothermal flow of multicomponent, multiphase fluids in one, two and three-dimensional porous and fractured media. Lacking an official Graphical User Interface tool for post-processing operations, several commercial and academic software have been developed to manage and display TOUGH2 input and output data files. Almost all of these tools seem to have limits to visualizing parameter values of the numerical model, work only with a predefined binary version of TOUGH2, and only a few of them can manage locally refined unstructured grids (i.e. Voronoi grids). To overcome these limitations, the authors have developed and tested a dedicated software application (called TOUGH2Viewer) for reading and managing TOUGH2 output files, written in Java and able to provide an interactive 3D view of the numerical model. Several functionalities have been implemented for block query and searching, contour mapping and 3D surface mapping of TOUGH2 primary variables (i.e. pressure, temperature, etc.). TOUGH2Viewer is also able to display 2D and 3D views of mass and heat flow between blocks, for each time step in which the simulation proceeds. The application described in this paper is under development to improve its functionalities; nevertheless the current software release is a valid support tool for post-processing that significantly improves the possibility to inspect the simulated data coming from TOUGH2.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.