Genetic analysis of Soil-Borne Cereal Mosaic Virus (SBCMV) resistance in durum wheat was carried out using a population of 180 recombinant inbred lines (RILs) obtained from Simeto (susceptible) 9 Levante (resistant). The RILs were characterized for SBCMV response in the field under severe and uniform SBCMV infection in two growing seasons and genotyped with simple sequence repeat (SSR) and Diversity Arrays Technology_ markers. Transgressive segregation was observed for disease reaction as estimated by symptom severity scores and virus concentration in leaves. Heritability of the disease response was high, with h2 values consistently above 80%. A major quantitative trait locus (QTL) (QSbm.ubo-2BS) in the distal telomeric region of chromosome 2BS accounted for 60–70% of the phenotypic variation for symptom severity, 40–55% for virus concentration and 15–30% for grain yield. The favorable allele was contributed by Levante. Seven additional QTL influenced SBCMV resistance, with the low-susceptibility allele contributed by Levante at five QTL and by Simeto at the remaining two. The meta-QTL analysis carried out using the data from two mapping populations (Simeto 9 Levante and Meridiano 9 Claudio) suggests that in both populations SBCMV resistance is likely controlled by QSbm.ubo-2BS. Our results confine QSbm.ubo-2BS to a c. 2-cM-wide interval flanked by SSR markers that are already being used for mark

Maccaferri M., Francia R., Ratti C., Rubies Autonell C., Colalongo C., Ferrazzano G., et al. (2012). Genetic analysis of Soil-Borne Cereal Mosaic Virus response in durum wheat: evidence for the role of the major quantitative trait locus QSbm.ubo-2BS and of minor quantitative trait loci. MOLECULAR BREEDING, 29 (4), 973-988 [10.1007/s11032-011-9673-8].

Genetic analysis of Soil-Borne Cereal Mosaic Virus response in durum wheat: evidence for the role of the major quantitative trait locus QSbm.ubo-2BS and of minor quantitative trait loci.

MACCAFERRI, MARCO;RATTI, CLAUDIO;RUBIES AUTONELL, CONCEPCION;TUBEROSA, ROBERTO;
2012

Abstract

Genetic analysis of Soil-Borne Cereal Mosaic Virus (SBCMV) resistance in durum wheat was carried out using a population of 180 recombinant inbred lines (RILs) obtained from Simeto (susceptible) 9 Levante (resistant). The RILs were characterized for SBCMV response in the field under severe and uniform SBCMV infection in two growing seasons and genotyped with simple sequence repeat (SSR) and Diversity Arrays Technology_ markers. Transgressive segregation was observed for disease reaction as estimated by symptom severity scores and virus concentration in leaves. Heritability of the disease response was high, with h2 values consistently above 80%. A major quantitative trait locus (QTL) (QSbm.ubo-2BS) in the distal telomeric region of chromosome 2BS accounted for 60–70% of the phenotypic variation for symptom severity, 40–55% for virus concentration and 15–30% for grain yield. The favorable allele was contributed by Levante. Seven additional QTL influenced SBCMV resistance, with the low-susceptibility allele contributed by Levante at five QTL and by Simeto at the remaining two. The meta-QTL analysis carried out using the data from two mapping populations (Simeto 9 Levante and Meridiano 9 Claudio) suggests that in both populations SBCMV resistance is likely controlled by QSbm.ubo-2BS. Our results confine QSbm.ubo-2BS to a c. 2-cM-wide interval flanked by SSR markers that are already being used for mark
2012
Maccaferri M., Francia R., Ratti C., Rubies Autonell C., Colalongo C., Ferrazzano G., et al. (2012). Genetic analysis of Soil-Borne Cereal Mosaic Virus response in durum wheat: evidence for the role of the major quantitative trait locus QSbm.ubo-2BS and of minor quantitative trait loci. MOLECULAR BREEDING, 29 (4), 973-988 [10.1007/s11032-011-9673-8].
Maccaferri M.; Francia R.; Ratti C.; Rubies Autonell C.; Colalongo C.; Ferrazzano G.; Tuberosa R.; M C. Sanguineti;
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/121960
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact