A model is introduced to investigate structure, stability, dynamics, and properties of MoS2. The tribological behavior of the material is obtained from the autocorrelation function, ACF, of the forces, using the Green-Kubo equation, and by the classical Amontons' laws. In the idealized system, i.e. without defects, junctions, vacancies, asperities, and impurities, both models find a superlubrication regime, in agreement with some experiments. In nanotubes, NTs, friction is an order of magnitude lower than in the layered systems. The calculations also show that there is a substantial stabilization, per atom, for the formation of multiwall NTs with at least four walls

Stability, Dynamics, and Lubrication of MoS2 Platelets and Nanotubes

DALLAVALLE, MARCO;SAENDIG, NADJA;ZERBETTO, FRANCESCO
2012

Abstract

A model is introduced to investigate structure, stability, dynamics, and properties of MoS2. The tribological behavior of the material is obtained from the autocorrelation function, ACF, of the forces, using the Green-Kubo equation, and by the classical Amontons' laws. In the idealized system, i.e. without defects, junctions, vacancies, asperities, and impurities, both models find a superlubrication regime, in agreement with some experiments. In nanotubes, NTs, friction is an order of magnitude lower than in the layered systems. The calculations also show that there is a substantial stabilization, per atom, for the formation of multiwall NTs with at least four walls
Dallavalle M.; Sandig N.; Zerbetto F
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/121787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 69
social impact