A deep structural investigation predominantly by X-Ray Spectroscopic techniques is conducted on films of copper hexacyanoferrate (CuHCF) deposited under different conditions, aimed at establishing structure-properties relationships. We show that the potentiodynamic electrosynthesis of CuHCF on carbon-based surfaces produces a highly disordered material, with a variable amount of Prussian Blue (PB). The subsequent Cu2+ intercalation induces the partial conversion of PB into CuHCF, which explains the improved electrocatalytic properties after the intercalation process. Both Cu and Fe K-edge data have been recorded. For the sample with the lower amount of PB, we could perform a multiple edge data analysis to determine the local atomic environment around both metal centres using the same set of structural parameters.. The presence of a high multiplicity Cu-N-C-Fe linear chains has allowed us to determine accurately the local environment of Fe while fitting the Cu K-edge data only. Using this approach we have retrieved structural information around Fe for those samples in which the concomitant presence of PB would have made impossible the analysis of the Fe K-edge. The Fe-C, C-N and Cu-N bond distances have been found in agreement with those of the bulk structures, but higher values of [Fe(CN)6] vacancies for the building blocks have been evidenced, reaching a value of ~45% in one sample. XANES, Raman and SEM data agree to the model proposed of each studied electrode.

Giorgetti M., Guadagnini L., Tonelli D., Minicucci M., Aquilanti G. (2012). Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi- technique approach. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 14, 5527-5537 [10.1039/C2CP24109A].

Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi- technique approach

GIORGETTI, MARCO;GUADAGNINI, LORELLA;TONELLI, DOMENICA;
2012

Abstract

A deep structural investigation predominantly by X-Ray Spectroscopic techniques is conducted on films of copper hexacyanoferrate (CuHCF) deposited under different conditions, aimed at establishing structure-properties relationships. We show that the potentiodynamic electrosynthesis of CuHCF on carbon-based surfaces produces a highly disordered material, with a variable amount of Prussian Blue (PB). The subsequent Cu2+ intercalation induces the partial conversion of PB into CuHCF, which explains the improved electrocatalytic properties after the intercalation process. Both Cu and Fe K-edge data have been recorded. For the sample with the lower amount of PB, we could perform a multiple edge data analysis to determine the local atomic environment around both metal centres using the same set of structural parameters.. The presence of a high multiplicity Cu-N-C-Fe linear chains has allowed us to determine accurately the local environment of Fe while fitting the Cu K-edge data only. Using this approach we have retrieved structural information around Fe for those samples in which the concomitant presence of PB would have made impossible the analysis of the Fe K-edge. The Fe-C, C-N and Cu-N bond distances have been found in agreement with those of the bulk structures, but higher values of [Fe(CN)6] vacancies for the building blocks have been evidenced, reaching a value of ~45% in one sample. XANES, Raman and SEM data agree to the model proposed of each studied electrode.
2012
Giorgetti M., Guadagnini L., Tonelli D., Minicucci M., Aquilanti G. (2012). Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi- technique approach. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 14, 5527-5537 [10.1039/C2CP24109A].
Giorgetti M.; Guadagnini L.; Tonelli D.; Minicucci M.; Aquilanti G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/118844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 67
social impact