We have examined the addition of Escherichia coli to the diet at day 0 of adult life of females from two Oregon R Drosophila melanogaster strains, selected for different longevities: a short-life with an average adult life span of 10 days and a long-life standard R strain with an average adult life span of 50 days. The addition of bacteria to the diet significantly prolonged the fly longevity in both strains and affected the structure and histochemical reactivity of the fat body. The increased survival was characterized by great amount of glycogen accumulated in fat body cells from both strains. In aged control animals, fed with standard diet, lipid droplets were seen to be stored in fat body of short-lived, but not long-lived, flies. On the whole, our data indicate that exogenous bacteria are able to extend the survival of Drosophila females, and suggest that such a beneficial effect can be mediated, at least in part, by the fat body cells that likely play a role in modulating the accumulation and mobilization of reserve stores to ensure lifelong energy homeostasis.

Morpho-functional changes of fat body in bacteria fed Drosophila melanogaster strains / Franchini A.; Mandrioli M.; Franceschi C.; Ottaviani E.. - In: JOURNAL OF MOLECULAR HISTOLOGY. - ISSN 1567-2379. - STAMPA. - 43:(2012), pp. 243-251. [10.1007/s10735-011-9382-y]

Morpho-functional changes of fat body in bacteria fed Drosophila melanogaster strains.

FRANCESCHI, CLAUDIO;
2012

Abstract

We have examined the addition of Escherichia coli to the diet at day 0 of adult life of females from two Oregon R Drosophila melanogaster strains, selected for different longevities: a short-life with an average adult life span of 10 days and a long-life standard R strain with an average adult life span of 50 days. The addition of bacteria to the diet significantly prolonged the fly longevity in both strains and affected the structure and histochemical reactivity of the fat body. The increased survival was characterized by great amount of glycogen accumulated in fat body cells from both strains. In aged control animals, fed with standard diet, lipid droplets were seen to be stored in fat body of short-lived, but not long-lived, flies. On the whole, our data indicate that exogenous bacteria are able to extend the survival of Drosophila females, and suggest that such a beneficial effect can be mediated, at least in part, by the fat body cells that likely play a role in modulating the accumulation and mobilization of reserve stores to ensure lifelong energy homeostasis.
2012
Morpho-functional changes of fat body in bacteria fed Drosophila melanogaster strains / Franchini A.; Mandrioli M.; Franceschi C.; Ottaviani E.. - In: JOURNAL OF MOLECULAR HISTOLOGY. - ISSN 1567-2379. - STAMPA. - 43:(2012), pp. 243-251. [10.1007/s10735-011-9382-y]
Franchini A.; Mandrioli M.; Franceschi C.; Ottaviani E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/117259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact