We study relations between the k-Hessian energy, and the fractional Sobolev energy , where F k (k = 1, . . . , n) is the k-Hessian operator on ℝ n , and u is a k-convex function vanishing at ∞. We prove that there is a constant C > 0 such that C^(-1) E k [u] ≦ ℰ k [u] ≦ CE k [u], where the lower estimate is obtained under some additional assumptions on u.

F. Ferrari, B. Franchi, I. E. Verbitsky (2012). Hessian inequalities and the fractional Laplacian. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 667, 133-148 [10.1515/CRELLE.2011.116].

Hessian inequalities and the fractional Laplacian

FERRARI, FAUSTO;FRANCHI, BRUNO;
2012

Abstract

We study relations between the k-Hessian energy, and the fractional Sobolev energy , where F k (k = 1, . . . , n) is the k-Hessian operator on ℝ n , and u is a k-convex function vanishing at ∞. We prove that there is a constant C > 0 such that C^(-1) E k [u] ≦ ℰ k [u] ≦ CE k [u], where the lower estimate is obtained under some additional assumptions on u.
2012
F. Ferrari, B. Franchi, I. E. Verbitsky (2012). Hessian inequalities and the fractional Laplacian. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 667, 133-148 [10.1515/CRELLE.2011.116].
F. Ferrari; B. Franchi; I. E. Verbitsky
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/117072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact