The constant increase in energy need and the growing attention to the related environmental impact have given a boost to the development of new strategies in order to reduce the primary energy consumption and to improve its utilization. One of the possible strategies for achieving this aim is Combined Heat and Power (CHP) specially if coupled with the concept of on-site generation (also known as distributed generation). These approaches allow the reduction of fuel consumption and pollutant emissions and the increase of security in energy supply. This paper introduces the Thermophotovoltaic Organic Rankine Cycle Integrated System (TORCIS), an energy system integrating a ThermoPhotoVoltaic generator (TPV) and an Organic Rankine Cycle (ORC). This study represents the start-up of a research program which involves three research teams from IMEM – National Research Council, ENDIF – University of Ferrara and DIEM – University of Bologna. The aim of this research is the complete definition and the pre-prototyping characterization of this system covering all the unresolved issues in this field. More specifically, TPV is a system to convert the radiation emitted from an artificial heat source (i.e. the combustion of fuel) into electrical energy by the use of photovoltaic cells. In this system, the produced electrical power is strictly connected to the thermal one as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows this limitation to be overcome by the realization of a CHP system which can be regulated with a large degree of freedom changing the ratio between the produced electrical and thermal power. In this study a thermodynamic analysis of this system is presented and discussed in order to highlight its potential in the distributed generation scenario.
A. De Pascale, C. Ferrari, F. Melino, M. Morini, M. Pinelli (2012). Integration between a Thermo-Photo-Voltaic generator and an Organic Rankine Cycle. APPLIED ENERGY, 97, 695-703 [10.1016/j.apenergy.2011.12.043].
Integration between a Thermo-Photo-Voltaic generator and an Organic Rankine Cycle
DE PASCALE, ANDREA;MELINO, FRANCESCO;
2012
Abstract
The constant increase in energy need and the growing attention to the related environmental impact have given a boost to the development of new strategies in order to reduce the primary energy consumption and to improve its utilization. One of the possible strategies for achieving this aim is Combined Heat and Power (CHP) specially if coupled with the concept of on-site generation (also known as distributed generation). These approaches allow the reduction of fuel consumption and pollutant emissions and the increase of security in energy supply. This paper introduces the Thermophotovoltaic Organic Rankine Cycle Integrated System (TORCIS), an energy system integrating a ThermoPhotoVoltaic generator (TPV) and an Organic Rankine Cycle (ORC). This study represents the start-up of a research program which involves three research teams from IMEM – National Research Council, ENDIF – University of Ferrara and DIEM – University of Bologna. The aim of this research is the complete definition and the pre-prototyping characterization of this system covering all the unresolved issues in this field. More specifically, TPV is a system to convert the radiation emitted from an artificial heat source (i.e. the combustion of fuel) into electrical energy by the use of photovoltaic cells. In this system, the produced electrical power is strictly connected to the thermal one as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows this limitation to be overcome by the realization of a CHP system which can be regulated with a large degree of freedom changing the ratio between the produced electrical and thermal power. In this study a thermodynamic analysis of this system is presented and discussed in order to highlight its potential in the distributed generation scenario.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.