In this paper, we aim at assessing hierarchical Bayesian modeling for the analysis of multiple exposures and highly correlated effects in a multilevel setting. We exploit an artificial data set to apply our method and show the gains in the final estimates of the crucial parameters. As a motivating example to simulate data, we consider a real prospective cohort study designed to investigate the association of dietary exposures with the occurrence of colon-rectum cancer in a multilevel framework, where, e.g., individuals have been enrolled from different countries or cities. We rely on the presence of some additional information suitable to mediate the final effects of the exposures and to be arranged in a level-2 regression to model similarities among the parameters of interest (e.g., data on the nutrient compositions for each dietary item).

Roli G., Monari P. (2012). Hierarchical Bayesian models for the estimation of correlated multiple effects in multilevel data: a simulation study to assess model performance. QUADERNI DI STATISTICA, 14, 197-200.

Hierarchical Bayesian models for the estimation of correlated multiple effects in multilevel data: a simulation study to assess model performance

ROLI, GIULIA;MONARI, PAOLA
2012

Abstract

In this paper, we aim at assessing hierarchical Bayesian modeling for the analysis of multiple exposures and highly correlated effects in a multilevel setting. We exploit an artificial data set to apply our method and show the gains in the final estimates of the crucial parameters. As a motivating example to simulate data, we consider a real prospective cohort study designed to investigate the association of dietary exposures with the occurrence of colon-rectum cancer in a multilevel framework, where, e.g., individuals have been enrolled from different countries or cities. We rely on the presence of some additional information suitable to mediate the final effects of the exposures and to be arranged in a level-2 regression to model similarities among the parameters of interest (e.g., data on the nutrient compositions for each dietary item).
2012
Roli G., Monari P. (2012). Hierarchical Bayesian models for the estimation of correlated multiple effects in multilevel data: a simulation study to assess model performance. QUADERNI DI STATISTICA, 14, 197-200.
Roli G.; Monari P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/116397
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact