Oncolytic herpes simplex viruses (HSVs) represent a novel frontier against tumors resistant to standard therapies, like glioblastoma (GBM). The oncolytic HSVs that entered clinical trials so far showed encouraging results; however, they are marred by the fact that they are highly attenuated. We engineered HSVs that maintain unimpaired lytic efficacy and specifically target cells that express tumor-specific receptors, thus limiting the cytotoxicity only to cancer cells, and leaving unharmed the neighboring tissues. We report on the safety and efficacy in a high-grade glioma (HGG) model of R-LM113, an HSV recombinant retargeted to human epidermal growth factor receptor 2 (HER2), frequently expressed in GBMs. We demonstrated that R-LM113 is safe in vivo as it does not cause encephalitis when intracranially injected in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, extremely sensitive to wild-type HSV. The efficacy of R-LM113 was assessed in a platelet-derived growth factor (PDGF)-induced infiltrative glioma model engineered to express HER2 and transplanted intracranially in adult NOD/SCID mice. Mice injected with HER2-engineered glioma cells infected with R-LM113 showed a doubled survival time compared with mice injected with uninfected cells. A doubling in survival time from the beginning of treatment was obtained also when R-LM113 was administered into already established tumors. These data demonstrate the efficacy of R-LM113 in thwarting tumor growth.
Gambini E., Reisoli E., Appolloni I., Gatta V., Campadelli-Fiume G., Menotti L., et al. (2012). Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. MOLECULAR THERAPY, 20(5), 994-1001 [10.1038/mt.2012.22].
Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma
GATTA, VALENTINA;MENOTTI, LAURA;
2012
Abstract
Oncolytic herpes simplex viruses (HSVs) represent a novel frontier against tumors resistant to standard therapies, like glioblastoma (GBM). The oncolytic HSVs that entered clinical trials so far showed encouraging results; however, they are marred by the fact that they are highly attenuated. We engineered HSVs that maintain unimpaired lytic efficacy and specifically target cells that express tumor-specific receptors, thus limiting the cytotoxicity only to cancer cells, and leaving unharmed the neighboring tissues. We report on the safety and efficacy in a high-grade glioma (HGG) model of R-LM113, an HSV recombinant retargeted to human epidermal growth factor receptor 2 (HER2), frequently expressed in GBMs. We demonstrated that R-LM113 is safe in vivo as it does not cause encephalitis when intracranially injected in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, extremely sensitive to wild-type HSV. The efficacy of R-LM113 was assessed in a platelet-derived growth factor (PDGF)-induced infiltrative glioma model engineered to express HER2 and transplanted intracranially in adult NOD/SCID mice. Mice injected with HER2-engineered glioma cells infected with R-LM113 showed a doubled survival time compared with mice injected with uninfected cells. A doubling in survival time from the beginning of treatment was obtained also when R-LM113 was administered into already established tumors. These data demonstrate the efficacy of R-LM113 in thwarting tumor growth.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.