Through an extensive set of simulations we investigate the performance of different linear regression procedures commonly used to convert magnitudes from one type into another one, an operation that also has strong influence on the slope of the frequency-magnitude (the b-value of the Gutenberg–Richter) distribution. It has already been demonstrated that a general orthogonal regression provides the most reliable results. However, questions arise when the ratio between the variances of the magnitudes to be related (the knowledge of which is required to apply the general orthogonal regression) cannot be computed. We therefore systematically investigate the biases introduced by the classical standard least-squares regressions and the orthogonal regressions (or similar procedures) as a function of the true slope between magnitudes, of the ratio g between magnitude variances, and of the absolute variances of magnitudes. We compute such biases through simulations very close to the real cases inferred from the German and Chinese broadband networks. We observe that for 0.7 gtrue 1.8 the orthogonal regression under the g 1 assumption performs better than standard regressions. For values outside this interval neither procedure is capable of correct estimates. Therefore it is recommended to estimate the absolute errors and their ratio from empirical data and apply the general orthogonal regression. This requires that a seismological data center publish average estimates of event magnitudes and also their related standard deviations. Regrettably, this is not yet a common practice, thus impeding the derivation of optimal magnitude conversion relations.

Castellaro S., Bormann P. (2007). Performance of different regression procedures on the magnitude regression problem. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 97, 1167-1175 [10.1785/0120060102].

Performance of different regression procedures on the magnitude regression problem

CASTELLARO, SILVIA;
2007

Abstract

Through an extensive set of simulations we investigate the performance of different linear regression procedures commonly used to convert magnitudes from one type into another one, an operation that also has strong influence on the slope of the frequency-magnitude (the b-value of the Gutenberg–Richter) distribution. It has already been demonstrated that a general orthogonal regression provides the most reliable results. However, questions arise when the ratio between the variances of the magnitudes to be related (the knowledge of which is required to apply the general orthogonal regression) cannot be computed. We therefore systematically investigate the biases introduced by the classical standard least-squares regressions and the orthogonal regressions (or similar procedures) as a function of the true slope between magnitudes, of the ratio g between magnitude variances, and of the absolute variances of magnitudes. We compute such biases through simulations very close to the real cases inferred from the German and Chinese broadband networks. We observe that for 0.7 gtrue 1.8 the orthogonal regression under the g 1 assumption performs better than standard regressions. For values outside this interval neither procedure is capable of correct estimates. Therefore it is recommended to estimate the absolute errors and their ratio from empirical data and apply the general orthogonal regression. This requires that a seismological data center publish average estimates of event magnitudes and also their related standard deviations. Regrettably, this is not yet a common practice, thus impeding the derivation of optimal magnitude conversion relations.
2007
Castellaro S., Bormann P. (2007). Performance of different regression procedures on the magnitude regression problem. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 97, 1167-1175 [10.1785/0120060102].
Castellaro S.; Bormann P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/113369
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 92
social impact